Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 3 | 493-499

Article title

Coexpression of CAV-1, AT1-R and FOXM1 in prostate and breast cancer and normal cell lines and their influence on metastatic properties

Content

Title variants

Languages of publication

EN

Abstracts

EN
The aim of this study was to evaluate the coexpression of caveolin-1 (CAV-1), angiotensin II type 1 receptor (AT1-R) and forkhead box Ml (FOXM1) in prostate and breast cancer cell lines, in comparison with normal cell lines. CAV-1, AT1-R and FOXM1 expression was determined by reverse transcription-quantitative polymerase chain reaction and western blot analysis in the prostate cancer cell lines PC3, DU145 and LNCaP; prostate normal cell line PNT1A; breast cancer cell lines MCF-7 and MDA-MB-231; and the normal breast cell line 184A1. A correlation between the expression levels of the investigated genes and their metastatic properties was determined by the Spearman's rank test (P<0.05) and Aspin-Welsch t-test, respectively. In prostate cell lines, a significant correlation was noted between CAV-1 and AT1-R expression and between FOXM1 and CAV-1 expression. A correlation between the expression levels of the investigated genes and their metastatic potential was also observed, with relatively high expression of all the investigated genes in the normal prostate cell line PNT1A. In comparison to prostate cancer cell lines, an adverse dependency between CAV-1, AT1-R, FOXM1 expression and metastatic potential was observed in the breast cancer cell lines. Relatively high expression of all tested genes was observed in the normal breast cell line 184A1, which was decreasing respectively with increasing metastatic potential of breast cancer cell lines. The results obtained here indicate that CAV-1, FOXM1 and AT1-R may be potential markers of tumorigenesis in certain types of cancer in vitro.

Year

Volume

63

Issue

3

Pages

493-499

Physical description

Dates

published
2016
received
2015-03-24
revised
2016-04-08
accepted
2016-05-12
(unknown)
2016-05-20

Contributors

  • Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Łódź, Poland
  • Department of Molecular Cancerogenesis, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Łódź, Poland
  • Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Łódź, Poland
  • Department of Comparative Endocrinology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Łódź, Poland

References

  • Agelaki S, Spiliotaki M, Markomanolaki H, Kallergi G, Mavroudis D, Georgoulias V, Stournaras C (2009) Caveolin-1 regulates EGFR signaling in MCF-7 breast cancer cells and enhances gefitinib-induced tumor cell inhibition. Cancer Biol Ther 8: 1470-1477.
  • Bartholomew JN, Volonte D, Galbiati F (2009) Caveolin-1 regulates the antagonistic pleiotropic properties of cellular senescence through a novel Mdm2/p53-mediated pathway. Cancer Res 69: 2878-2886. doi: 10.1158/0008-5472.CAN-08-2857.
  • Bergamaschi A, Madak-Erdogan Z, Kim YJ, Choi YL, Lu H, Katzenellenbogen BS (2014) The forkhead transcription factor FOXM1 promotes endocrine resistance and invasiveness in estrogen receptor-positive breast cancer by expansion of stem-like cancer cells. Breast Cancer Res 16: 436. doi: 10.1186/s13058-014-0436-4.
  • Bouras T, Lisanti MP, Pestell RG (2004) Caveolin-1 in breast cancer. Cancer Biol Ther 3: 931-941.
  • Burgermeister E, Liscovitch M, Rocken C, Schmid RM, Ebert MP (2008) Caveats of caveolin-1 in cancer progression. Cancer Lett 268: 187-201. doi: 10.1016/j.canlet.2008.03.055.
  • Cariaga-Martinez AE, Lopez-Ruiz P, Nombela-Blanco MP, Motino O, Gonzalez-Corpas A, Rodriguez-Ubreva J, Lobo MV, Cortes MA, Colas B (2013) Distinct and specific roles of AKT1 and AKT2 in androgen-sensitive and androgen-independent prostate cancer cells. Cell Signal 25: 1586-1597. doi: 10.1016/j.cellsig.2013.03.019.
  • Chandran UR, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W, Michalopoulos G, Becich M, Monzon FA (2007) Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer 7: 64. doi: 10.1186/1471-2407-7-64.
  • Chiu WT, Lee HT, Huang FJ, Aldape KD, Yao J, Steeg PS, Chou CY, Lu Z, Xie K, Huang S (2011) Caveolin-1 upregulation mediates suppression of primary breast tumor growth and brain metastases by stat3 inhibition. Cancer Res 71: 4932-4943. doi: 10.1158/0008-5472.CAN-10-4249.
  • Dai B, Kang SH, Gong W, Liu M, Aldape KD, Sawaya R, Huang S (2007) Aberrant FoxM1B expression increases matrix metalloproteinase-2 transcription and enhances the invasion of glioma cells. Oncogene 26: 6212-6219. doi: 10.1038/sj.onc.1210443.
  • Dominska K, Lachowicz-Ochedalska A (2008) The involvement of the renin-angiotensin system (RAS) in cancerogenesis. Postepy Biochem 54: 294-300.
  • Dominska K, Piastowska AW, Rebas E, Lachowicz-Ochedalska A (2009) The influence of peptides from the angiotensin family on tyrosine kinase activity and cell viability in a human hormone-dependent prostate cancer line. Endokrynol Pol 60: 363-369.
  • Dominska K, Piastowska-Ciesielska AW, Lachowicz-Ochedalska A, Ochedalski T (2012) Similarities and differences between effects of angiotensin III and angiotensin II on human prostate cancer cell migration and proliferation. Peptides 37: 200-206. doi: 10.1016/j.peptides.2012.07.022.
  • Glait C, Ravid D, Lee SW, Liscovitch M, Werner H (2006) Caveolin-1 controls BRCA1 gene expression and cellular localization in human breast cancer cells. FEBS Lett 580: 5268-5274. doi: 10.1016/j.febslet.2006.08.071.
  • Goetz JG, Lajoie P, Wiseman SM, Nabi IR (2008) Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Rev 27: 715-735. doi: 10.1007/s10555-008-9160-9.
  • Grande-Garcia A, Del Pozo MA (2008) Caveolin-1 in cell polarization and directional migration. Eur J Cell Biol 87: 641-647. doi: 10.1016/j.ejcb.2008.02.001.
  • Gumulec J, Sochor J, Hlavna M, Sztalmachova M, Krizkova S, Babula P, Hrabec R, Rovny A, Adam V, Eckschlager T, Kizek R, Masarik M (2012) Caveolin-1 as a potential high-risk prostate cancer biomarker. Oncol Rep 27: 831-841. doi: 10.3892/or.2011.1587.
  • Halasi M, Gartel AL (2013) FOX(M1) news--it is cancer. Mol Cancer Ther 12: 245-254. doi: 10.1158/1535-7163.MCT-12-0712.
  • Han F, Zhu HG (2010) Caveolin-1 regulating the invasion and expression of matrix metalloproteinase (MMPs) in pancreatic carcinoma cells. J Surg Res 159: 443-450. doi: 10.1016/j.jss.2009.03.079.
  • Huang C, Qiu Z, Wang L, Peng Z, Jia Z, Logsdon CD, Le X, Wei D, Huang S, Xie K (2012) A novel FoxM1-caveolin signaling pathway promotes pancreatic cancer invasion and metastasis. Cancer Res 72: 655-665. doi: 10.1158/0008-5472.CAN-11-3102.
  • Jethon A, Pula B, Piotrowska A, Wojnar A, Rys J, Dziegiel P, Podhorska-Okolow M (2012) Angiotensin II type 1 receptor (AT-1R) expression correlates with VEGF-A and VEGF-D expression in invasive ductal breast cancer. Pathol Oncol Res 18: 867-873. doi: 10.1007/s12253-012-9516-x.
  • Kalin TV, Ustiyan V, Kalinichenko VV (2011) Multiple faces of FoxM1 transcription factor: lessons from transgenic mouse models. Cell Cycle 10: 396-405.
  • Kalin TV, Wang IC, Ackerson TJ, Major ML, Detrisac CJ, Kalinichenko VV, Lyubimov A, Costa RH (2006) Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice. Cancer Res 66: 1712-1720. doi: 10.1158/0008-5472.CAN-05-3138.
  • Kim IM, Ackerson T, Ramakrishna S, Tretiakova M, Wang IC, Kalin TV, Major ML, Gusarova GA, Yoder HM, Costa RH, Kalinichenko VV (2006) The Forkhead Box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer Res 66: 2153-2161. doi: 10.1158/0008-5472.CAN-05-3003.
  • Kosaka T, Miyajima A, Takayama E, Kikuchi E, Nakashima J, Ohigashi T, Asano T, Sakamoto M, Okita H, Murai M, Hayakawa M (2007) Angiotensin II type 1 receptor antagonist as an angiogenic inhibitor in prostate cancer. Prostate 67: 41-49. doi: 10.1002/pros.20486.
  • Laoukili J, Stahl M, Medema RH (2007) FoxM1: at the crossroads of ageing and cancer. Biochim Biophys Acta 1775: 92-102. doi: 10.1016/j.bbcan.2006.08.006.
  • Liu M, Dai B, Kang SH, Ban K, Huang FJ, Lang FF, Aldape KD, Xie TX, Pelloski CE, Xie K, Sawaya R, Huang S (2006) FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res 66: 3593-3602. doi: 10.1158/0008-5472.CAN-05-2912.
  • Mahmoud AM, Al-Alem U, Ali MM, Bosland MC (2015) Genistein increases estrogen receptor beta expression in prostate cancer via reducing its promoter methylation. J Steroid Biochem Mol Biol 152: 62-75. doi: 10.1016/j.jsbmb.2015.04.018.
  • Millour J, Constantinidou D, Stavropoulou AV, Wilson MS, Myatt SS, Kwok JM, Sivanandan K, Coombes RC, Medema RH, Hartman J, Lykkesfeldt AE, Lam EW (2010) FOXM1 is a transcriptional target of ERalpha and has a critical role in breast cancer endocrine sensitivity and resistance. Oncogene 29: 2983-2995. doi: 10.1038/onc.2010.47.
  • Park HJ, Gusarova G, Wang Z, Carr JR, Li J, Kim KH, Qiu J, Park YD, Williamson PR, Hay N, Tyner AL, Lau LF, Costa RH, Raychaudhuri P (2011) Deregulation of FoxM1b leads to tumour metastasis. EMBO Mol Med 3: 21-34. doi: 10.1002/emmm.201000107.
  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30: e36.
  • Piastowska-Ciesielska AW, Dominska K, Nowakowska M, Gajewska M, Gajos-Michniewicz A, Ochedalski T (2014) Angiotensin modulates human mammary epithelial cell motility. J Renin Angiotensin Aldosterone Syst 15: 419-429. doi: 10.1177/1470320313475904.
  • Piastowska-Ciesielska AW, Drobnik J, Zarzynska J, Dominska K, Russell JA, Ochedalski T (2011) Influence of myocardial infarction on changes in the expression of angiotensin type 1 receptor in the rat prostate. Folia Histochem Cytobiol 49: 497-503.
  • Piastowska-Ciesielska AW, Kozlowski M, Wagner W, Dominska K, Ochedalski T (2013a) Effect of an angiotensin II type 1 receptor blocker on caveolin-1 expression in prostate cancer cells. Arch Med Sci 9: 739-744. doi: 10.5114/aoms.2012.30955.
  • Piastowska-Ciesielska AW, Pluciennik E, Wojcik-Krowiranda K, Bienkiewicz A, Nowakowska M, Pospiech K, Bednarek AK, Dominska K, Ochedalski T (2013b) Correlation between VEGFR-2 receptor kinase domain-containing receptor (KDR) mRNA and angiotensin II receptor type 1 (AT1-R) mRNA in endometrial cancer. Cytokine 61: 639-644. doi: 10.1016/j.cyto.2012.11.017.
  • Senetta R, Stella G, Pozzi E, Sturli N, Massi D, Cassoni P (2013) Caveolin-1 as a promoter of tumour spreading: when, how, where and why. J Cell Mol Med 17: 325-336. doi: 10.1111/jcmm.12030.
  • Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65: 5-29. doi: 10.3322/caac.21254.
  • Trimmer C, Sotgia F, Whitaker-Menezes D, Balliet RM, Eaton G, Martinez-Outschoorn UE, Pavlides S, Howell A, Iozzo RV, Pestell RG, Scherer PE, Capozza F, Lisanti MP (2011) Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment: a new genetically tractable model for human cancer associated fibroblasts. Cancer Biol Ther 11: 383-394.
  • Uemura H, Ishiguro H, Ishiguro Y, Hoshino K, Takahashi S, Kubota Y (2008a) Angiotensin II induces oxidative stress in prostate cancer. Mol Cancer Res 6: 250-258. doi: 10.1158/1541-7786.MCR-07-0289.
  • Uemura H, Ishiguro H, Kubota Y (2008b) Pharmacology and new perspectives of angiotensin II receptor blocker in prostate cancer treatment. Int J Urol 15: 19-26. doi: 10.1111/j.1442-2042.2007.01937.x.
  • Uemura H, Ishiguro H, Nagashima Y, Sasaki T, Nakaigawa N, Hasumi H, Kato S, Kubota Y (2005a) Antiproliferative activity of angiotensin II receptor blocker through cross-talk between stromal and epithelial prostate cancer cells. Mol Cancer Ther 4: 1699-1709. doi: 10.1158/1535-7163.MCT-04-0295.
  • Uemura H, Nakaigawa N, Ishiguro H, Kubota Y (2005b) Antiproliferative efficacy of angiotensin II receptor blockers in prostate cancer. Curr Cancer Drug Targets 5: 307-323.
  • Wang IC, Chen YJ, Hughes DE, Ackerson T, Major ML, Kalinichenko VV, Costa RH, Raychaudhuri P, Tyner AL, Lau LF (2008) FoxM1 regulates transcription of JNK1 to promote the G1/S transition and tumor cell invasiveness. J Biol Chem 283: 20770-20778. doi: 10.1074/jbc.M709892200.
  • Xu XS, Miao RC, Wan Y, Zhang LQ, Qu K, Liu C (2015) FoxM1 as a novel therapeutic target for cancer drug therapy. Asian Pac J Cancer Prev 16: 23-29.
  • Yang G, Goltsov AA, Ren C, Kurosaka S, Edamura K, Logothetis R, DeMayo FJ, Troncoso P, Blando J, DiGiovanni J, Thompson TC (2012) Caveolin-1 upregulation contributes to c-Myc-induced high-grade prostatic intraepithelial neoplasia and prostate cancer. Mol Cancer Res 10: 218-229. doi: 10.1158/1541-7786.MCR-11-0451.
  • Zhang Y, Zhang N, Dai B, Liu M, Sawaya R, Xie K, Huang S (2008) FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer Res 68: 8733-8742. doi: 10.1158/0008-5472.CAN-08-1968.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv63p493kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.