PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 3 | 469-473
Article title

Virus-like particles as drug delivery vectors

Content
Title variants
Languages of publication
EN
Abstracts
EN
Virus-like particles (VLPs) assemble spontaneously during the viral cycle or in heterologous systems during expression of viral structural protein. Depending on the complexity of the VLPs, they can be obtained by expression in prokaryotic or eukaryotic expression system from the suitable recombinant vectors, or formed in cell-free conditions. Moreover, they can be built from proteins of a single virus, or can present the proteins or peptides derived from a virus or cell on a platform derived from any other single virus, thus forming chimeric VLPs. VLPs are best known for their immunogenic properties, but the versatility of VLPs allows a wide variety of applications. They are lately in the centre of investigations in vaccinology, drug delivery and gene therapy. This review focuses on utilization of VLPs for drug delivery.
Keywords
EN
VLPs   vaccines   virus  
Publisher

Year
Volume
63
Issue
3
Pages
469-473
Physical description
Dates
published
2016
received
2016-02-17
revised
2016-05-12
accepted
2016-05-15
(unknown)
2016-07-30
Contributors
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
  • Therex, TIMC-IMAG, CNRS UMR 5525, UJF, Domaine de la Merci, 38700 La Tronche, France
References
  • Ashley CE, Carnes EC, Phillips GK, Durfee PN, Buley MD, Lino CA, Padilla DP, Phillips B, Carter MB, Willman CL, Brinker CJ, Caldeira Jdo C, Chackerian B, Wharton W, Peabody DS (2011) Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano 5: 5729-5745. doi: 10.1021/nn201397z.
  • Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59: 748-758.
  • Chroboczek J, Szurgot I, Szolajska E (2014) Virus-like particles as vaccine. Acta Biochim Pol 61: 531-539.
  • Cortes-Perez NG, Sapin C, Jaffrelo L, Daou S, Grill JP, Langella P, Seksik P, Beaugerie L, Chwetzoff S, Trugnan G (2010) Rotavirus-like particles: a novel nanocarrier for the gut. J Biomed Biotechnol 2010: 317545. doi: 10.1155/2010/317545.
  • Crisci E, Bárcena J, Montoya M (2012) Virus-like particles: The new frontier of vaccines for animal viral infections. Vet Immunol Immunopathol 148: 211-225. doi: 10.1016/j.vetimm.
  • Douglas T, Young M (1998) Host-guest encapsulation of material by assembled virus protein cages. Nature 393: 152-155.
  • Estes M, Kapikian AZ (2007) Rotaviruses. In Fields virology, Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE eds 5th edn, pp 1917-1974. Lippincott Williams & Wilkins, Philadelphia, PA. PubMed
  • Fender P, Ruigrok RW, Gout E, Buffet S, Chroboczek J (1997) Adenovirus dodecahedron, a new vector for human gene transfer. Nat Biotechnol 15: 52-56.
  • Frietze KM, Peabody DS, Chackerian B (2016) Engineering virus-like particles as vaccine platforms. Curr Opin Virol 18: 44-49. doi: 10.1016/j.coviro.2016.03.001.
  • Grasso S, Santi L (2010) Viral nanoparticles as macromolecular devices for new therapeutic and pharmaceutical approaches. Int J Physiol Pathophysiol Pharmacol 2: 161-178.
  • Guu TS, Liu Z, Ye Q, Mata DA, Li K, Yin C, Zhang J, Tao YJ (2009) Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding. Proc Natl Acad Sci USA 106: 12992-12997. doi: 10.1073/pnas.0904848106.
  • Ishizu KI, Watanabe H, Han SI, Kanesashi SN, Hoque M, Yajima H, Kataoka K, Handa H (2001) Roles of disulfide linkage and calcium ion-mediated interactions in assembly and disassembly of virus-like particles composed of simian virus 40. VP1 capsid protein. J Virol 75: 61-72.
  • Jian F, Zhang Y, Wang J, Ba K, Mao R, Lai W, Lin Y (2012) Toxicity of biodegradable nanoscale preparations. Curr Drug Metab 13: 440-446.
  • Kushnir N, Streatfield SJ, Yusibov V (2012) Virus-like particles as a highly efficient vaccine platform: Diversity of targets and production systems and advances in clinical development. Vaccine 31: 58-83. doi: 10.1016/j.vaccine.
  • Lua LH, Connors NK, Sainsbury F, Chuan YP, Wibowo N, Middelberg AP (2014) Bioengineering virus-like particles as vaccines. Biotechnol Bioeng 111: 425-440. doi: 10.1002/bit.25159.
  • Ma Y, Nolte RJ, Cornelissen JJ (2012) Virus-based nanocarriers for drug delivery. Adv Drug Deliv Rev 64: 811-825. doi: 10.1016/j.addr.2012.01.005.
  • Pan Y, Jia T, Zhang Y, Zhang K, Zhang R, Li J, Wang L (2012) MS2 VLP-based delivery of microRNA-146a inhibits autoantibody production in lupus-prone mice. Int J Nanomedicine 7: 5957-5967. doi: 10.2147/IJN.S37990.
  • Park JH, Choi EA, Cho EW, Lee YJ, Park JM, Na SY, Kim KL (2000) Detection of cellular receptors specific for the hepatitis B virus preS surface protein on cell lines of extrahepatic origin. Biochem Biophys Res Commun 277: 246-254.
  • Peretti S, Schiavoni I, Pugliese K, Federico M (2006) Selective elimination of HIV-1-infected cells by Env-directed,HIV-1-based virus-like particles Virology 345: 115-126.
  • Perrone LA, Ahmad A, Veguilla V, Lu X, Smith G, Katz JM, Pushko P, Tumpey TM (2009) Intranasal vaccination with 1918 influenza virus-like particles protects mice and ferrets from lethal 1918 and H5N1 influenza virus challenge. J Virol 83: 5726-5734. doi: 10.1128/JVI.00207-09.
  • Rynda-Apple A, Patterson DP, Douglas T (2014) Virus-like particles as antigenic nanomaterials for inducing protective immune responses in the lung. Nanomedicine (Lond) 9: 1857-1868. doi: 10.2217/nm.14.107.
  • Sebestik J, Niederhafner P, Jezek J (2011) Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids 40: 301-370. doi: 10.1007/s00726-010-0707-z.
  • Shin YC, Folk WR (2003) Formation of polyomavirus-like particles with different VP1 molecules that bind the urokinase plasminogen activator receptor. J Virol 77: 11491-1148.
  • Shete HK, Prabhu RH, Patravale VB (2014) Endosomal escape: a bottleneck in intracellular delivery. J Nanosci Nanotechnol 14: 460-474.
  • Shlomai A, Lubelsky Y, Har-Noy O, Shaul Y (2009) The 'Trojan horse' model-delivery of anti-HBV small interfering RNAs by a recombinant HBV vector. Biochem Biophys Res Commun 390: 619-623. doi: 10.1016/j.bbrc.2009.10.016.
  • Smith GE, Flyer DC, Raghunandan R, Liu Y, Wei Z, Wu Y, Kpamegan E, Courbron D, Fries LF 3rd, Glenn GM (2013) Development of influenza H7N9 virus like particle (VLP) vaccine: homologous A/Anhui/1/2013 (H7N9) protection and heterologous A/chicken/Jalisco/CPA1/2012 (H7N3) cross-protection in vaccinated mice challenged with H7N9 virus. Vaccine 31: 4305-4313. doi: 10.1016/j.vaccine.2013.07.043.
  • Spohn G, Jennings GT, Martina BE, Keller I, Beck M, Pumpens P, Osterhaus AD, Bachmann MF (2010) A VLP-based vaccine targeting domain III of the West Nile virus E protein protects from lethal infection in mice. Virol J 7: 146. doi: 10.1186/1743-422X-7-146.
  • Van den Berg A, Dowdy SF (2013) Protein transduction domain delivery of therapeutic macromolecules. Curr Opin Biotechnol 22: 888-893. doi: 1016/j.copbio.2011.03.008.
  • Zeltins A (2013) Construction and characterization of virus-like particles: a review. Mol Biotechnol 53: 92-107. doi: 10.1007/s12033-012-9598-4.
  • Zochowska M, Piguet AC, Jemielity J, Kowalska J, Szolajska E, Dufour JF, Chroboczek J (2015) Virus-like particle-mediated intracellular delivery of mRNA cap analog with in vivo activity against hepatocellular carcinomas. Nanomedicine 11: 67-76. doi: 10.1016/j.nano.2014.07.009.
  • Zochowska M, Paca A, Schoehn G, Andrieu JP, Chroboczek J, Dublet B, Szolajska E (2009) Adenovirus dodecahedron, as a drug delivery vector. PLoS One 4: e5569. doi: 10.1371/journal.pone.0005569.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv63p469kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.