Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 3 | 417-426

Article title

Interaction of human fibronectin with Candida glabrata epithelial adhesin 6 (Epa6)

Content

Title variants

Languages of publication

EN

Abstracts

EN
Adherence of pathogens to extracellular matrix proteins and host cells is one of the essential steps in the microbial colonization of the human organism. The adhesion of C. glabrata, i.e. the second major causative agent of human disseminated candidiases after C. albicans, to the host epithelium mainly engages specific fungal cell wall proteins - epithelial adhesins (Epa) - in particular, Epa1, Epa6 and Epa7. The aim of the present study was to identify the major Epa protein involved in the interactions with the human extracellular matrix protein - fibronectin - and to present the kinetic and thermodynamic characteristics of these interactions. A relatively novel gel-free approach, i.e. the "cell surface shaving" that consists in short treatment of fungal cells with trypsin was employed to identify the C. glabrata surfaceome. Epa6 was purified, and the isolated protein was characterized in terms of its affinity to human fibronectin using a microplate ligand-binding assay and surface plasmon resonance measurements. The dissociation constants for the binding of Epa6 to fibronectin were determined to range between 9.03 × 10-9 M and 7.22 × 10-8 M, depending on the method used (surface plasmon resonance measurements versus the microplate ligand-binding assay, respectively). The identified fungal pathogen-human host protein-protein interactions might become a potential target for novel anticandidal therapeutic approaches.

Year

Volume

63

Issue

3

Pages

417-426

Physical description

Dates

published
2016
received
2016-03-21
revised
2016-05-13
accepted
2016-05-25
(unknown)
2016-07-30

Contributors

author
  • Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
  • Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
  • Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
  • Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
author
  • Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland

References

  • Allignet J, England P, Old I, El Solh N (2002) Several regions of the repeat domain of the Staphylococcus caprae autolysin, AtlC, are involved in fibronectin binding. FEMS Microbiol Lett 213: 193-197. doi: 10.1111/j.1574-6968.2002.tb11305.x.
  • Bassetti M, Merelli M, Ansaldi F, de Florentiis D, Sartor A, Scarparo C, Callegari A, Righi E (2015) Clinical and therapeutic aspects of candidemia: a five year single centre study. PLoS One 10: e0127534. doi: 10.1371/journal.pone.0127534.
  • Brunke S, Hube B (2013) Two unlike cousins: Candida albicans and Candida glabrata infection strategies. Cell Microbiol 15: 701-708. doi: http://dx.doi.org/10.1111/cmi.12091.
  • Castano I, Pan SJ, Zupancic M, Hennequin C, Dujon B, Cormack BP (2005) Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Mol Microbiol 55: 1246-1258. doi: 10.1111/j.1365-2958.2004.04465.x.
  • Chaffin WL (2008) Candida albicans cell wall proteins. Microbiol Mol Biol Rev 72: 495-544. doi: 10.1128/MMBR.00032-07.
  • Crowe JD, Sievwright IK, Auld GC, Moore NR, Gow NA, Booth NA (2003) Candida albicans binds human plasminogen: identification of eight plasminogen-binding proteins. Mol Microbiol 47: 1637-1651. doi: 10.1046/j.1365-2958.2003.03390.x.
  • Cue D, Southern SO, Southern PJ, Prabhakar J, Lorelli W, Smallheer JM, Mousa SM, Cleary PP (2000) A nonpeptide integrin antagonist can inhibit epithelial cell ingestion of Streptococcus pyogenes by blocking formation of integrin 51-fibronectin-M1 protein complexes. Proc Natl Acad Sci USA 97: 2858-2863. doi: 10.1073/pnas.050587897.
  • de Groot PW, Kraneveld EA, Yin QY, Dekker HL, Gross U, Crielaard W, de Koster CG, Bader O, Klis FM, Weig M (2008) The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins. Eukaryot Cell 7: 1951-1964. doi: 10.1128/EC.00284-08.
  • d'Enfert C, Janbon G (2016) Biofilm formation in Candida glabrata: What have we learnt from functional genomics approaches? FEMS Yeast Res 16: fov111. doi: 10.1093/femsyr/fov111.
  • Dickerson MT, Abney MB, Cameron CE, Knecht M, Bachas LG, Anderson KW (2012) Fibronectin binding to the Treponema pallidum adhesin protein fragment rTp0483 on functionalized self-assembled monolayers. Bioconjug Chem 23: 184-195. doi: 10.1021/bc200436x.
  • Diderrich R, Kock M, Maestre-Reyna M, Keller P, Steuber H, Rupp S, Essen LO, Mösch HU (2015) Structural hot spots determine functional diversity of the Candida glabrata epithelial adhesin family. J Biol Chem 290: 19597-19613. doi: 10.1074/jbc.M115.655654.
  • Donohue DS, Ielasi FS, Goossens KV, Willaert RG (2011) The N-terminal part of Als1 protein from Candida albicans specifically binds fucose-containing glycans. Mol Microbiol 80: 1667-1679. doi: 10.1111/j.1365-2958.2011.07676.x.
  • Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, et al. (2004) Genome evolution in yeasts. Nature 430: 35-44. doi: 10.1038/nature02579.
  • Dziewanowska K, Patti JM, Deobald CF, Bayles KW, Trumble WR, Bohach GA (1999) Fibronectin binding protein and host cell tyrosine kinase are required for internalization of Staphylococcus aureus by epithelial cells. Infect Immun 67: 4673-4678.
  • El-Kirat-Chatel S, Beaussart A, Derclaye S, Alsteens D, Kucharíková S, Van Dijck P, Dufrêne YF (2015) Force nanoscopy of hydrophobic interactions in the fungal pathogen Candida glabrata. ACS Nano 9: 1648-1655. doi: 10.1021/nn506370f.
  • Garat C, Kheradmand F, Albertine KH, Folkesson HG, Matthay MA (1996) Soluble and insoluble fibronectin increases alveolar epithelial wound healing in vitro. Am J Physiol 271: L844-L853.
  • Ghosh K, Ren XD, Shu XZ, Prestwich GD, Clark R (2006) Fibronectin functional domains coupled to hyaluronan stimulate adult human dermal fibroblast responses critical for wound healing. Tissue Eng 12: 601-613. doi: 10.1089/ten.2006.12.601.
  • Gil-Bona A, Parra-Giraldo CM, Hernáez ML, Reales-Calderon JA, Solis NV, Filler SG, Monteoliva L, Gil C (2015) Candida albicans cell shaving uncovers new proteins involved in cell wall integrity, yeast to hypha transition, stress response and host-pathogen interaction. J Proteomics 127: 340-351. doi: 10.1016/j.jprot.2015.06.006.
  • Gómez-Molero E, de Boer AD, Dekker HL, Moreno-Martínez A, Kraneveld EA, Ichsan, Chauhan N, Weig M, de Soet JJ, de Koster CG, Bader O, de Groot PW (2015) Proteomic analysis of hyperadhesive Candida glabrata clinical isolates reveals a core wall proteome and differential incorporation of adhesins. FEMS Yeast Res 15: fov098. doi: 10.1093/femsyr/fov098.
  • Gupta A, Gupta A, Varma A (2015) Candida glabrata candidemia: An emerging threat in critically ill patients. Indian J Crit Care Med 19: 151-154. doi: 10.4103/0972-5229.152757.
  • Heilmann CJ, Sorgo AG, Klis FM (2012) News from the fungal front: wall proteome dynamics and host-pathogen interplay. PLoS Pathog 8: e1003050. doi: 10.1371/journal.ppat.1003050.
  • Hernáez ML, Ximénez-Embún P, Martínez-Gomariz M, Gutiérrez-Blázquez MD, Nombela C, Gil C (2010) Identification of Candida albicans exposed surface proteins in vivo by a rapid proteomic approach. J Proteomics 73: 1404-1409. doi: 10.1016/j.jprot.2015.06.006.
  • Hoyer LL, Scherer S, Shatzman AR, Livi GP (1995) Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol Microbiol 15: 39-54.
  • Ielasi FS, Verhaeghe T, Desmet T, Willaert RG (2014) Engineering the carbohydrate-binding site of Epa1p from Candida glabrata: generation of adhesin mutants with different carbohydrate specificity. Glycobiology 24: 1312-1322. doi: 10.1093/glycob/cwu075.
  • Jacobsen ID, Grosse K, Berndt A, Hube B (2011) Pathogenesis of Candida albicans infections in the alternative chorio-allantoic membrane chicken embryo model resembles systemic murine infections. PLoS One 6: e19741. doi: 10.1371/journal.pone.0019741.
  • Joh D, Wann ER, Kreikemeyer B, Speziale P, Hook M (1999) Role of fibronectin-binding MSCRAMMs in bacterial adherence and entry into mammalian cells. Matrix Biol 18: 211-223.
  • Jordan RP, Williams DW, Moran GP, Coleman DC, Sullivan DJ (2014) Comparative adherence of Candida albicans and Candida dubliniensis to human buccal epithelial cells and extracellular matrix proteins. Med Mycol 52: 254-263. doi: 10.1093/mmy/myt032.
  • Karkowska-Kuleta J, Kozik A (2014) Moonlighting proteins as virulence factors of pathogenic fungi, parasitic protozoa and multicellular parasites. Mol Oral Microbiol 29: 270-283. doi: 10.1111/omi.12078.
  • Karkowska-Kuleta J, Zajac D, Bochenska O, Kozik A (2015) Surfaceome of pathogenic yeasts, Candida parapsilosis and Candida tropicalis, revealed with the use of cell surface shaving method and shotgun proteomic approach. Acta Biochim Pol 62: 807-819. doi: 10.18388/abp.2015_1140.
  • Kaur R, Domergue R, Zupancic ML, Cormack BP (2005) Expression of Candida glabrata adhesins following exposure to chemical preservatives. Curr Opin Microbiol 8: 378-384. doi: 10.1086/599120.
  • Klis FM, Boorsma A, De Groot PW (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23: 185-202. doi: 10.1002/yea.1349.
  • Kuhn DM, Vyas VK (2012) The Candida glabrata adhesin Epa1p causes adhesion, phagocytosis, and cytokine secretion by innate immune cells. FEMS Yeast Res 12: 398-414. doi: 10.1111/j.1567-1364.2011.00785.x.
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. doi: 10.1038/227680a0.
  • Lenselink EA (2013) Role of fibronectin in normal wound healing. Int Wound J 12: 313-316. doi: 10.1111/iwj.12109.
  • Li L, Kashleva H, Dongari-Bagtzoglou A (2007) Cytotoxic and cytokine-inducing properties of Candida glabrata in single and mixed oral infection models. Microb Pathog 42: 138-147. doi: 10.1016/j.micpath.2006.12.003.
  • Maestre-Reyna M, Diderrich R, Veelders MS, Eulenburg G, Kalugin V, Brückner S, Keller P, Rupp S, Mösch HU, Essen LO (2012) Structural basis for promiscuity and specificity during Candida glabrata invasion of host epithelia. Proc Natl Acad Sci USA 109: 16864-16869. doi: 10.1073/pnas.1207653109.
  • Magnusson MK, Mosher DF (1998) Fibronectin: structure, assembly, and cardiovascular implications. Arterioscler Thromb Vasc Biol 18: 1363-1370.
  • Mikulska M, del Bono V, Ratto S, Viscoli C (2012) Occurrence, presentation and treatment of candidemia. Expert Rev Clin Immunol 8: 755-765. doi: 10.1586/eci.12.52.
  • Nett JE, Cabezas-Olcoz J, Marchillo K, Mosher DF, Andes DR (2016) Targeting fibronectin to disrupt in vivo Candida biofilms. Antimicrob Agents Chemother 60: 3152-3155. doi: 10.1128/AAC.03094-15.
  • Olaya-Abril A, Jiménez-Munguía I, Gómez-Gascón L, Rodríguez-Ortega MJ (2014) Surfomics: shaving live organisms for a fast proteomic identification of surface proteins. J Proteomics 97: 164-176. doi: 10.1016/j.jprot.2013.03.035.
  • Perlroth J, Choi B, Spellberg B (2007) Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol 45: 321-346. doi: 10.1080/13693780701218689.
  • Pfaller M, Neofytos D, Diekema D, Azie N, Meier-Kriesche HU, Quan SP, Horn D (2012) Epidemiology and outcomes of candidemia in 3648 patients: data from the Prospective Antifungal Therapy (PATH Alliance®) registry, 2004-2008. Diagn Microbiol Infect Dis 74: 323-331. doi: 10.1016/j.diagmicrobio.2012.10.003.
  • Pinho RT, Vannier-Santos MA, Alves CR, Marino AP, Castello Branco LR, Lannes-Vieira J (2002) Effect of Trypanosoma cruzi released antigens binding to non-infected cells on anti-parasite antibody recognition and expression of extracellular matrix components. Acta Trop 83: 103-15. doi: 10.1016/S0001-706X(02)00062-1.
  • Pitarch A, Sánchez M, Nombela C, Gil C (2002) Sequential fractionation and two dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteome. Mol Cell Proteomics 1: 967-982. doi: 10.1074/mcp.M200062-MCP200.
  • Polke M, Hube B, Jacobsen ID (2015) Candida survival strategies. Adv Appl Microbiol 91: 139-235. doi: 10.1016/bs.aambs.2014.12.002.
  • Rapala-Kozik M, Karkowska J, Jacher A, Golda A, Barbasz A, Guevara-Lora I, Kozik A (2008) Kininogen adsorption to the cell surface of Candida spp. Int Immunopharmacol 8: 237-241. doi: 10.1016/j.intimp.2007.07.005.
  • Roetzer A, Klopf E, Gratz N, Marcet-Houben M, Hiller E, Rupp S, Gabaldón T, Kovarik P, Schüller C (2011) Regulation of Candida glabrata oxidative stress resistance is adapted to host environment. FEBS Lett 585: 319-27. doi: 10.1016/j.febslet.2010.12.006.
  • Schwarz-Linek U, Höök M, Potts JR (2004) The molecular basis of fibronectin-mediated bacterial adherence to host cells. Mol Microbiol 52: 631-641. doi: 10.1111/j.1365-2958.2004.04027.x.
  • Seweryn K, Karkowska-Kuleta J, Wolak N, Bochenska O, Kedracka-Krok S, Kozik A, Rapala-Kozik M (2015) Kinetic and thermodynamic characterization of the interactions between the components of human plasma kinin-forming system and isolated and purified cell wall proteins of Candida albicansi. Acta Biochim Polon 62: 825-835. doi: 10.18388/abp.2015_1142.
  • Sheppard DC, Yeaman MR, Welch WH, Phan QT, Fu Y, Ibrahim AS, Edwards JE (2004) Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem 279: 30480-30489. doi: 10.1074/jbc.M401929200.
  • Shinji H, Seki K, Tajima A, Uchida A, Masuda S (2003) Fibronectin bound to the surface of Staphylococcus aureus induces association of very late antigen 5 and intracellular signaling factors with macrophage cytoskeleton. Infect Immun 71: 140-146. doi: 10.1128/IAI.71.1.140-146.2003.
  • Sturtevant J, Calderone R (1997) Candida albicans adhesins: Biochemical aspects and virulence. Rev Iberoam Micol 14: 90-97.
  • Tadec L, Talarmin JP, Gastinne T, Bretonniere C, Miegeville M, La Pape P, Morio F (2016) Epidemiology, risk factor, species distribution, antifungal resistance and outcome of Candidemia at a single French hospital: a 7-year study. Mycoses 59: 296-303. doi: 10.1111/myc.12470.
  • Tate MC, Shear DA, Hoffman SW, Stein DG, Archer DR, LaPlaca MC (2002) Fibronectin promotes survival and migration of primary neural stem cells transplanted into the traumatically injured mouse brain. Cell Transplant 11: 283-295. doi: 10.0000/096020198389933.
  • Vialás V, Perumal P, Gutierrez D, Ximénez-Embún P, Nombela C, Gil C, Chaffin WL (2012) Cell surface shaving of Candida albicans biofilms, hyphae, and yeast form cells. Proteomics 12: 2331-2339. doi: 10.1002/pmic.201100588.
  • Westwater C, Schofield DA, Nicholas PJ, Paulling EE, Balish E (2007) Candida glabrata and Candida albicans; dissimilar tissue tropism and infectivity in a gnotobiotic model of mucosal candidiasis. FEMS Immunol Med Microbiol 51: 134-139. doi: 10.1111/j.1574-695X.2007.00287.x.
  • Zupancic ML, Frieman M, Smith D, et al. (2008) Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol Microbiol 68: 547-59. doi: 10.1111/j.1365-2958.2008.06184.x.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv63p417kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.