Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 3 | 403-410

Article title

The action of ten secreted aspartic proteases of pathogenic yeast Candida albicans on major human salivary antimicrobial peptide, histatin 5

Content

Title variants

Languages of publication

EN

Abstracts

EN
Candida albicans, belonging to the most common fungal pathogens of humans, exploits many virulence factors to infect the host, of which the most important is a family of ten secreted aspartic proteases (Saps) that cleave numerous peptides and proteins, often deregulating the host's biochemical homeostasis. It was recently shown that C. albicans cells can inactivate histatin5 (His5), a salivary histidine-rich anticandidal peptide, through the hydrolytic action of Saps. However, the current data on this subject are incomplete as only four out of ten Saps have been studied with respect to hydrolytic processing of His5 (Sap2, Sap5, Sap9-10). The aim of the study was to investigate the action of all Saps on His5 and to characterize this process in terms of peptide chemistry. It was shown that His5 was degraded by seven out of ten Saps (Sap1-4, Sap7-9) over a broad range of pH. The cleavage rate decreased in an order of Sap2>Sap9>Sap3>Sap7>Sap4>Sap1>Sap8. The degradation profiles for Sap2 and Sap9 were similar to those previously reported; however, in contrast to the previous study, Sap10 was shown to be unable to cleave His5. On a long-time scale, the peptide was completely degraded and lost its antimicrobial potential but after a short period of Sap treatment several shorter peptides (His1-13, His1-17, His1-21) that still decreased fungal survival were released. The results, presented hereby, provide extended characteristics of the action of C. albicans extracellular proteases on His5. Our study contribute to deepening the knowledge on the interactions between fungal pathogens and the human host.

Year

Volume

63

Issue

3

Pages

403-410

Physical description

Dates

published
2016
received
2016-03-21
revised
2016-05-10
accepted
2016-05-13
(unknown)
2016-07-08

Contributors

  • Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
  • Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
author
  • Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
author
  • Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
  • Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
author
  • Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland

References

  • Albrecht A, Felk A, Pichova I, Naglik JR, Schaller M, de Groot P, MacCallum D, Odds FC, Schafer W, Klis F, Monod M, Hube B (2006) Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J Biol Chem 281: 688-694. doi: 10.1074/jbc.M509297200.
  • Aoki W, Kitahara N, Miura N, Morisaka H, Yamamoto Y, Kuroda K, Ueda M (2011) Comprehensive characterization of secreted aspartic proteases encoded by a virulence gene family in Candida albicans. J Biochem 150: 431-438. doi: 10.1093/jb/mvr073.
  • Baliga S, Muglikar S, Kale R (2013) Salivary pH: A diagnostic biomarker. J Indian Soc Periodontol 17: 461-465. doi: 10.4103/0972-124X.118317.
  • Bochenska O, Rąpała-Kozik M, Wolak N, Braś G, Kozik A, Dubin A, Aoki W, Ueda M, Mak P (2013) Secreted aspartic peptidases of Candida albicans liberate bactericidal hemocidins from human hemoglobin. Peptides 48: 49-58. doi: 10.1016/j.peptides.2013.07.023.
  • Bochenska O, Rapala-Kozik M, Wolak N, Kamysz W, Grzywacz D, Aoki W, Ueda M, Kozik A (2015) Inactivation of human kininogen-derived antimicrobial peptides by secreted aspartic proteases produced by the pathogenic yeast Candida albicans. Biol Chem 396: 1369-1375. doi: 10.1515/hsz-2015-0167.
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254.
  • Bras G, Bochenska O, Rapala-Kozik M, Guevara-Lora I, Faussner A, Kozik A (2012) Extracellular aspartic protease SAP2 of Candida albicans yeast cleaves human kininogens and releases proinflammatory peptides, Met-Lys-bradykinin and des-Arg9-Met-Lys-bradykinin. Biol Chem 393: 829-839. doi: 10.1515/hsz-2012-0157.
  • Dynowska M, Ejdys E, Biedunkiewicz A, Kubiak D, Sucharzewska E, Rosłan M (2014) Yeasts isolated from frequently in-patients and out-patients. Ann Parasitol 60: 199-206.
  • Helmerhorst EJ, Alagl AS, Siqueira WL, Oppenheim FG (2006) Oral fluid proteolytic effects on histatin 5 structure and function. Arch Oral Biol 51: 1061-1070. doi: 10.1016/j.archoralbio.2006.06.005.
  • Hube B, Naglik J (2001) Candida albicans proteinases: resolving the mystery of a gene family. Microbiology 147: 1997-2005.
  • Koelsch G, Tang J, Loy JA, Monod M, Jackson K, Foundling SI, Lin X (2000) Enzymic characteristics of secreted aspartic proteases of Candida albicans. Biochim Biophys Acta 1480: 117-131.
  • Kozik A, Gogol M, Bochenska O, Karkowska-Kuleta J, Wolak N, Kamysz W, Aoki W, Ueda M, Faussner A, Rapala-Kozik M (2015) Kinin release from human kininogen by 10 aspartic proteases produced by pathogenic yeast Candida albicans. BMC Microbiol 15: 60. http://dx.doi/10.1186/s12866-015-0394-8.
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
  • Meiller TF, Hube B, Schild L, Shirtliff ME, Scheper M, Winkler R, Ton A, Jabra-Rizk MA (2009) A novel immune evasion strategy of Candida albicans: proteolytic cleavage of a salivary antimicrobial peptide. PloS One 4: e5039. doi: 10.1371/journal.pone.0005039.
  • Moffa EB, Mussi MC, Xiao Y, Garrido SS, Machado MA, Giampaolo ET, Siqueira WL (2015) Histatin 5 inhibits adhesion of C. albicans to reconstructed human oral epithelium. Front Microbiol 6: 885. doi: 10.3389/fmicb.2015.00885.
  • Naglik JR, Newport G, White TC, Fernandes-Naglik LL, Greenspan JS, Greenspan D, Sweet SP, Challacombe SJ, Agabian N (1999) In vivo analysis of secreted aspartyl proteinase expression in human oral candidiasis. Infect Immun 67: 2482-2490.
  • Naglik JR, Challacombe SJ, Hube B (2003a) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67: 400-428.
  • Naglik JR, Rodgers C, Shirlaw PJ, Dobbie JL, Fernandes-Naglik LL, Greenspan D, Agabian N, Challacombe SJ (2003b) Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with active oral and vaginal infections. J Infect Dis 188: 469-479. doi: 10.1086/376536.
  • Naglik J, Albrecht A, Bader O, Hube B (2004) Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6: 915-926.
  • Naglik JR, Moyes D, Makwana J, Kanzaria P, Tsichlaki E, Weindl G, Tappuni AR, Rodgers CA, Woodman AJ, Challacombe SJ, Schaller M, Hube B (2008) Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology 154: 3266-3280. doi: 10.1099/mic.0.2008/022293-0.
  • Perkins D, Pappin D, Creasy D, Cottrell J (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20: 3551-3567.
  • Puri S, Edgerton M (2014) How does it kill?: Understanding the candidacidal mechanism of salivary histatin 5. Eukaryotic Cell 13: 958-964. doi: 10.1128/EC.00095-14.
  • Raj PA, Edgerton M, Levine MJ (1990) Salivary histatin 5: Dependence of sequence, chain length, and helical conformation for candidacidal activity. J Biol Chem 265: 3898-3905.
  • Rapala-Kozik M, Bochenska O, Zawrotniak M, Wolak N, Trebacz G, Gogol M, Ostrowska D, Aoki W, Ueda M, Kozik A (2015) Inactivation of the antifungal and immunomodulatory properties of human cathelicidin LL-37 by aspartic proteases produced by the pathogenic yeast Candida albicans. Infect Immun 83: 2518-2530. doi: 10.1128/IAI.00023-15.
  • Rothstein DM, Spacciapoli P, Tran LT, Xu T, Roberts FD, Dalla Serra M, Buxton DK, Oppenheim FG, Friden P (2001) Anticandida activity is retained in P-113, a 12-amino-acid fragment of histatin 5. Antimicrob Agents Chemother 45: 1367-1373. doi: 10.1128/AAC.45.5.1367.
  • Samaranayake LP, Keung Leung W, Jin L (2009) Oral mucosal fungal infections. Periodontology 2000 49: 39-59. doi: 10.1111/j.1600-0757.2008.00291.x.
  • Schaller M, Korting HC, Schafer W, Sanglard D, Hube B (1998) Investigations on the regulation of secreted aspartyl proteases in a model of oral candidiasis in vivo. Mycoses 41 Suppl 2: 69-73.
  • Schaller M, Januschke E, Schackert C, Woerle B, Korting HC (2001) Different isoforms of secreted aspartyl proteinases (Sap) are expressed by Candida albicans during oral and cutaneous candidosis in vivo. J Med Microbiol 50: 743-747.
  • Schaller M, Borelli C, Korting HC, Hube B (2005) Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48: 365-377.
  • Schild L, Heyken A, de Groot PW, Hiller E, Mock M, de Koster C, Horn U, Rupp S, Hube B (2011) Proteolytic cleavage of covalently linked cell wall proteins by Candida albicans Sap9 and Sap10. Eukaryot Cell 10: 98-109.
  • Silva NC, Nery JM, Dias AL (2014) Aspartic proteinases of Candida spp.: role in pathogenicity and antifungal resistance. Mycoses 57: 1-11. doi: 10.1111/myc.12095.
  • Singh A, Verma R, Murari A, Agrawal A (2014) Oral candidiasis: an overview. J Oral Maxillofac Pathol 18: S81-S85. doi: 10.4103/0973?029X.141325.
  • Surdacka A, Strzyka K, Rydzewska A (2007) Changeability of oral cavity environment. Eur J Dent 1: 14-17.
  • Swidergall M, Ernst JF (2014) Interplay between Candida albicans and the antimicrobial peptide armory. Eukaryot Cell 13: 950-957. doi: 10.1128/EC.00093-14.
  • Torres SR, Garzino-Demo A, Meiller TF, Meeks V, Jabra-Rizk MA (2008) Salivary Histatin-5 and oral fungal colonization in HIV+individuals. Mycoses 52: 11-15.
  • Valentijn-Benz M, Nazmi K, Brand HS, van't Hof W, Veerman EC (2015) Growth of Candida albicans in human saliva is supported by low-molecular-mass compounds. FEMS Yeast Res 15: 1-8. doi: 10.1093/femsyr/fov088.
  • van't Hof W, Veerman EC, Nieuw Amerongen AV, Ligtenberg AJ (2014) Antimicrobial defense systems in saliva. Monogr Oral Sci 24: 40-51. doi: 10.1159/000358783.
  • Veerman EC, Valentijn-Benz M, Nazmi K, Ruissen AL, Walgreen-Weterings E, van Marle J, Doust AB, van't Hof W, Bolscher JR, Amerongen AV (2007) Energy depletion protects Candida albicans against antimicrobial peptides by rigidifying its cell membrane. J Biol Chem 282: 18831-18841. doi: 10.1074/jbc.M610555200.
  • Xu L, Lal K, Santarpia RP 3rd, Pollock JJ (1993) Salivary proteolysis of histidine-rich polypeptides and the antifungal activity of peptide degradation products. Arch Oral Biol 38: 277-283.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv63p403kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.