Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 2 | 335-341

Article title

Halophilic microorganisms in deteriorated historic buildings: insights into their characteristics

Content

Title variants

Languages of publication

EN

Abstracts

EN
Historic buildings are constantly being exposed to numerous climatic changes such as damp and rainwater. Water migration into and out of the material's pores can lead to salt precipitation and the so-called efflorescence. The structure of the material may be seriously threatened by salt crystallization. A huge pressure is produced when salt hydrates occupy larger spaces, which leads at the end to cracking, detachment and material loss. Halophilic microorganisms have the ability to adapt to high salinity because of the mechanisms of inorganic salt (KCl or NaCl) accumulation in their cells at concentrations isotonic to the environment, or compatible solutes uptake or synthesis. In this study, we focused our attention on the determination of optimal growth conditions of halophilic microorganisms isolated from historical buildings in terms of salinity, pH and temperature ranges, as well as biochemical properties and antagonistic abilities. Halophilic microorganisms studied in this paper could be categorized as a halotolerant group, as they grow in the absence of NaCl, as well as tolerate higher salt concentrations (Staphylococcus succinus, Virgibacillus halodenitrificans). Halophilic microorganisms have been also observed (Halobacillus styriensis, H. hunanensis, H. naozhouensis, H. litoralis, Marinococcus halophilus and yeast Sterigmatomyces halophilus). With respect to their physiological characteristics, cultivation at a temperature of 25-30°C, pH 6-7, NaCl concentration for halotolerant and halophilic microorganisms, 0-10% and 15-30%, respectively, provides the most convenient conditions. Halophiles described in this study displayed lipolytic, glycolytic and proteolytic activities. Staphylococcus succinus and Marinococcus halophilus showed strong antagonistic potential towards bacteria from the Bacillus genus, while Halobacillus litoralis displayed an inhibiting ability against other halophiles.

Year

Volume

63

Issue

2

Pages

335-341

Physical description

Dates

published
2016
received
2015-08-07
revised
2015-10-19
accepted
2015-11-02
(unknown)
2016-02-18

Contributors

  • Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Łódź, Poland
author
  • Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Łódź, Poland
  • Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Łódź, Poland
author
  • Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Łódź, Poland

References

  • Averhoff B, Müller V (2010) Exploring research frontiers in microbiology: recent advances in halophilic and thermophilic extremophiles. Res Microbiol 161: 506-514. doi: 10.1016/j.resmic.2010.05.006.
  • Bassi M, Giacobini C (1973) Scanning electron microscopy: a new technique in the study of the microbiology of work of art. Int Biodeterior Biodegradation 9: 57-68. doi: 10.1016/S0964-8305(01)00066-X.
  • Beech I, Gaylarde C (1999) Recent advances in the study of biocorrosion - an overview. Rev Microbiol 30: 177-190. doi: 10.1590/S0001-37141999000300001.
  • Caton TM, Witte LR, Ngyuen HD, Buchheim JA, Buchheim MA, Schneegurt MA (2004) Halotolerant aerobic heterotrophic bacteria from the Great Salt Plains of Oklahoma. Microb Ecol 48: 449-462. doi: 10.1007/s00248-004-0211-7.
  • Chen YG, Liu ZX, Zhang YQ, Zhang YX, Tang SK, Borrathybay E, Li WJ, Cui XL (2009) Halobacillus naozhouensis sp. nov., a moderately halophilic bacterium isolated from a sea anemone. Antonie Van Leeuwenhoek 96: 99-107. doi: 10.1007/s10482-009-9340-9.
  • Ettenauer J, Sterflinger K, Piñar G (2010) Cultivation and molecular monitoring of halophilic microorganisms inhabiting an extreme environment presented by a salt-attacked monument. Int J Astrobiology 9: 59-72. doi: 10.1017/S1473550409990383.
  • Ettenauer J, Jurado V, Piñar G, Miller AZ, Santner M, Saiz-Jimenez C, Sterflinger K (2014) Halophilic microorganisms are responsible for the rosy discolouration of saline environments in three historical buildings with mural paintings. PLoS ONE 9: e103844. doi: 10.1371/journal.pone.0103844.
  • Heyrman J, Mergaert J, Denys R, Swings J (1999) The use of fatty acid methyl ester analysis (FAME) for the identification of heterotrophic bacteria present on three mural paintings showing severe damage by microorganisms. FEMS Microbiol Lett 181: 55-62. doi: 10.1111/j.1574-6968.1999.tb08826.x.
  • Yin J, Chen JC, Wu Q, Chen GQ (2014) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv, in press. doi: 10.1016/j.biotechadv.2014.10.008.
  • Joo WA, Kim CW (2005) Proteomics of halophilic archaea. J Chromatogr B Analyt Technol Biomed Life Sci 815: 237-250. doi: 10.1016/j.jchromb.2004.10.041.
  • Jurado V, Miller AZ, Alias-Villegas C, Laiz L, Saiz-Jimenez C (2012) Rubrobacter bracarensis sp. nov., a novel member of genus Rubrobacter isolated from a biodeteriorated monument. Syst Appl Microbiol 35: 306-309. doi: 10.1016/j.syapm.2012.04.007.
  • Karbalaei-Heidari HR, Amoozegar MA, Ziaee AA (2009) Production, optimization and purification of a novel extracellular protease from the moderately halophilic bacterium. J Ind Microbiol Biotechnol 36: 21-27. doi: 10.1007/s10295-008-0466-y.
  • Koziróg A, Otlewska A, Piotrowska M, Rajkowska K, Nowicka-Krawczyk P, Hachułka M, Wolski GJ, Gutarowska B, Kunicka-Styczyńska A, Libudzisz Z, Żakowska Z, Żydzik-Białek A (2014) Colonising organisms as a biodegradation factor affecting historical wood materials at the former concentration camp of Auschwitz II-Birkenau. Int Biodeterior Biodegradation 86: 171-178. doi: 10.1016/j.ibiod.2013.08.004.
  • Kushner DJ, Kamekura M (1988) Physiology of halophilic eubacteria. In Halophilic Bacteria. Rodriguez-Valera F ed, pp 109-138, CRC Press Boca Raton, Florida.
  • Laiz L, Recio D, Hermosin B, Saiz-Jimenez C (2000) Microbial communities in salt efflorescences. In Of Microbes and Art. Cifferi O, Tiano P, Mastromei G eds, pp 77-88, Springer. doi: 10.1007/978-1-4615-4239-1_6.
  • Lazar I (1971) Investigations on the presence and role of bacteria in deteriorated zones of Cozia monastery painting. Rev Roum Biol Bot 16: 437-444.
  • Lobanova KV, Kerbalaeva AM, Tashpulatov ZZ, Gulyamova TG (2008) Carotene-forming activity of certain halophilic bacteria from Barsakelmes saline soil. Chem Nat Compd 44: 306-307. doi: 10.1007/s10600-008-9048-5.
  • López-Miras M, Piñar G, Romero-Noguera J, Bolivar-Galiano FC, Ettenauer J, Sterflinger K, Martin-Sanchez I (2013) Microbial communities adhering to the observe and reverse sides of oil painting on canvas: identification and evaluation of their biodegradative potential. Aerobiologia 29: 301-314. doi: 10.1007/s10453-012-9281-z.
  • Madigan MT, Oren A (1999) Thermophilic and halophilic extremophiles. Curr Opin Microbiol 2: 265-269. doi: 10.1016/S1369-5274(99)80046-0.
  • Márquez MC, Ventosa A, Ruiz-Berraquero F (1992) Phenotypic and chemotaxonomic characterization of Marinococcus halophilus. Syst Appl Microbiol 15: 63-69. doi: 10.1016/S0723-2020(11)80140-2.
  • Nowak A, Piotrowska M (2012) Biochemical activities of Brochothrix thermosphacta. Meat Sci 90: 410-413. doi: 10.1016/j.meatsci.2011.08.008.
  • Oren A (1986) Intracellular salt concentrations of the anaerobic halophilic eubacteria Haloanaerobium praevalens and Halobacteroides halobius. Can J Microbiol 32: 4-9. doi: 10.1139/m86-002.
  • Otlewska A, Adamiak J, Gutarowska B (2015) Clone-based comparative sequence analysis of 16S rRNA genes retrieved from biodeteriorating brick buildings of the former Auschwitz II-Birkenau concentration and extermination camp. Syst Appl Microbiol 38: 48-55. doi: 10.1016/j.syapm.2014.09.003.
  • Piñar G, Ramos C, Rölleke S, Schabereiter-Gurtner C, Vybiral D, Lubitz W, Denner EB (2001) Detection of indigenous Halobacillus population in damaged ancient wall paintings and building materials: molecular monitoring and cultivation. Appl Environ Microbiol 67: 4891-4895. doi: 10.1128/AEM.67.10.4891-4895.2001.
  • Piñar G, Ripka K, Weber J, Sterflinger K (2009) The micro-biota of a sub-surface monument the medival chapel of St. Virgil (Vienna, Austria). Int Biodeterior Biodegradation 63: 851-859. doi: 10.1016/j.ibiod.2009.02.004.
  • Piñar G, Piombino-Mascali D, Maixner F, Zink A, Sterflinger K (2013) Microbial survey of the mummies from the Capuchin Catacombs of Palermo, Italy: biodeterioration risk and contamination of the indoor air. FEMS Microbiol Ecol 86: 341-356. doi: 10.1111/1574-6941.12165.
  • Piñar G, Kraková L, Pangallo D, Piombino-Mascali D, Maixner F, Zink A, Sterflinger K (2014a) Halophilic bacteria are colonizing the exhibition areas of the Capuchin Catacombs in Palermo, Italy. Extremophiles 18: 677-691. doi: 10.1007/s00792-014-0649-6.
  • Piñar G, Ettenauer J, Sterflinger K (2014b) 'La vie en rose': a review of rosy discoloration of subsurface monuments. In The conservation of subterranean cultural heritage. Saiz-Jimenez C ed, pp 113-123, Taylor and Francis Group.
  • Piotrowska M, Otlewska A, Rajkowska K, Koziróg A, Hachułka M, Nowicka-Krawczyk P, Wolski GJ, Gutarowska B, Kunicka-Styczyńska A, Żydzik-Białek A (2014) Abiotic determinants of the historical building biodeterioration in the former Auschwitz II-Birkenau concentration and extermination camp. PLoS ONE 9: e109402. doi: 10.1371/journal.pone.0109402.
  • Rajkowska K, Otlewska A, Koziróg A, Piotrowska M, Nowicka-Krawczyk P, Hachułka M, Wolski GJ, Kunicka-Styczyńska A, Gutarowska B, Żydzik-Białek A (2014) Assessment of biological colonization of historic buildings in the former Auschwitz II-Birkenau concentration camp. Ann Microbiol 64: 799-808. doi: 10.1007/s13213-013-0716-8.
  • Ripka K, Denner EBM, Michaelsen A, Lubitz W, Piñar G (2006) Molecular characterization of Halobacillus strain isolated from different medieval wall paintings and buildings material in Austria. Int Biodeterior Biodegradation 58: 124-132. doi: 10.1016/j.ibiod.2006.05.004.
  • Rölleke S, Witte A, Wanner G, Lubitz W (1998) Medieval wall painting - a habitat for archaea: identification of archaea by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified gene fragments coding for 16S rRNA in a medieval wall painting. Int Biodeterior Biodegradation 41: 85-92. doi: 10.1016/S0964-8305(98)80011-5.
  • Saiz-Jimenez C, Laiz L (2000) Occurrence of halotolerant/halophilic bacterial communities in deteriorated monuments. Int Biodeterior Biodegradation 46: 319-326. doi: 10.1016/S0964-8305(00)00104-9.
  • Schneegurt MA (2012) Media and Conditions for the Growth of Halophilic and Halotolerant Bacteria and Archaea. In Advances in Understanding the Biology of Halophilic Microorganisms. Vreeland RH ed, pp 35-58, Springer Netherlands. doi: 10.1007/978-94-007-5539-0_2.
  • Spring S, Ludwig W, Marquez MC, Ventosa A, Schleifer KH (1996) Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46: 492-496. doi: 10.1099/00207713-46-2-492.
  • Sterflinger K, Ettenauer J, Piñar G (2014) Microbes, art, science and conservation, who wins the game? In Science, technology and cultural heritage. Rogerio-Candelera MA ed, pp 191-204, Taylor and Francis Group.
  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62: 504-544.
  • Ventosa A, Márquez MC, Sánchez-Porro C, de la Haba R (2012) Taxonomy of halophilic archaea and bacteria. In Advances in Understanding the Biology of Halophilic Microorganisms. Vreeland RH ed, pp 59-80, Springer, Dordrecht. doi: 10.1007/978-94-007-5539-0_3.
  • Vreeland RH, Straight S, Krammes J, Dougherty K, Rosenzweig WD, Kamekura M (2002) Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6: 445-452. doi: 10.1007/s00792-002-0278-3.
  • Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegradation 46: 343-368. doi: 10.1016/S0964-8305(00)00109-8.
  • Xiang W, Guo J, Feng W, Huang M, Chen H, Zhao J, Zhang J, Yang Z, Sun Q (2008) Community of extremely halophilic bacteria in historic Dagong Brine Well in southwestern China. World J Microbiol Biotechnol 24: 2297-2305. doi: 10.1007/s11274-008-9744-0.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv63p335kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.