Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 2 | 329-334

Article title

The links between hypertrophy, reproductive potential and longevity in the Saccharomyces cerevisiae yeast

Content

Title variants

Languages of publication

EN

Abstracts

EN
The yeast Saccharomyces cerevisiae has long been used as a model organism for studying the basic mechanisms of aging. However, the main problem with the use of this unicellular fungus is the unit of "longevity". For all organisms, lifespan is expressed in units of time, while in the case of yeast it is defined by the number of daughter cells produced. Additionally, in yeast the phenotypic effects of mutations often show a clear dependence on the genetic background, suggesting the need for an analysis of strains representing different genetic backgrounds. Our results confirm the data presented in earlier papers that the reproductive potential is strongly associated with an increase in cell volume per generation. An excessive cell volume results in the loss of reproductive capacity. These data clearly support the hypertrophy hypothesis. The time of life of all analysed mutants, with the exception of sch9D, is the same as in the case of the wild-type strain. Interestingly, the 121% increase of the fob1D mutant's reproductive potential compared to the sfp1D mutant does not result in prolongation of the mutant's time of life (total lifespan).

Keywords

Year

Volume

63

Issue

2

Pages

329-334

Physical description

Dates

published
2016
received
2015-08-01
revised
2016-01-17
accepted
2016-02-11
(unknown)
2016-02-29

Contributors

author
  • Department of Biochemistry and Cell Biology, University of Rzeszow, Rzeszów, Poland
  • Department of Biochemistry and Cell Biology, University of Rzeszow, Rzeszów, Poland

References

  • Aguilaniu H, Gustafsson L, Rigoulet M, Nystrom T (2003) Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299: 1751-1753, doi: 10.1126/science.1080418.
  • Bilinski T (2012) Hypertrophy, replicative ageing and the ageing process. FEMS Yeast Res 12: 739-740, doi: 10.1111/j.1567-1364.2012.00843.x.
  • Bilinski T, Zadrag-Tecza R, Bartosz G (2012) Hypertrophy hypothesis as an alternative explanation of the phenomenon of replicative aging of yeast. FEMS Yeast Res 12: 97-101, doi: 10.1111/j.1567-1364.2011.00759.x.
  • Bitterman KJ, Medvedik O, Sinclair DA (2003) Longevity regulation in Saccharomyces cerevisiae: linking metabolism, genome stability, and heterochromatin. Microbiol Mol Biol Rev 67: 376-399, doi: 10.1128%2FMMBR.67.3.376-399.2003.
  • Blumberg H, Silver P (1991) A split zinc-finger protein is required for normal yeast growth. Gene 107: 101-110.
  • Defossez PA, Prusty R, Kaeberlein M, Lin SJ, Ferrigno P, Silver PA, Keil RL, Guarente L (1999) Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol Cell 3: 447-455.
  • D'mello NP, Childress AM, Franklin DS, Kale SP, Pinswasdi C, Jazwinski SM (1994) Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem 269: 15451-15459.
  • Erjavec N, Larsson L, Grantham J, Nystrom T (2007) Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes Dev 21: 2410-2421. doi: 10.1101/gad.439307.
  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292: 288-290. doi: 10.1126/science.1059497.
  • Ganley AR, Ide S, Saka K, Kobayashi T (2009) The effect of replication initiation on gene amplification in the rDNA and its relationship to aging. Mol Cell 35: 683-693. doi: 10.1016/j.molcel.2009.07.012.
  • Gershon H, Gershon D (2000) The budding yeast, Saccharomyces cerevisiae, as a model for aging research: a critical review. Mech Ageing Dev 120: 1-22. doi: 10.1016/s0047-6374(00)00182-2.
  • Heeren G, Rinnerthaler M, Laun P, Von Seyerl P, Kossler S, Klinger H, Hager M, Bogengruber E, Jarolim S, Simon-Nobbe B, Schuller C, Carmona-Gutierrez D, Breitenbach-Koller L, Muck C, Jansen-Durr P, Criollo A, Kroemer G, Madeo F, Breitenbach M (2009) The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1. Aging (Albany NY) 1: 622-636.
  • Jazwinski SM (1999) Longevity, genes, and aging: a view provided by a genetic model system. Exp Gerontol 34: 1-6.
  • Jorgensen P, Nishikawa JL, Breitkreutz BJ, Tyers M (2002) Systematic identification of pathways that couple cell growth and division in yeast. Science 297: 395-400. doi: 10.1126/science.1070850.
  • Jorgensen P, Rupes I, Sharom JR, Schneper L, Broach JR, Tyers M (2004) A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Develop 18: 2491-2505. doi: 10.1101/gad.1228804.
  • Kaeberlein M (2010) Lessons on longevity from budding yeast. Nature 464: 513-519. doi: 10.1038/nature08981.
  • Kaeberlein M, Kennedy BK (2005) Large-scale identification in yeast of conserved ageing genes. Mech Ageing Dev 126: 17-21. doi: 10.1016/j.mad.2004.09.013.
  • Kaeberlein M, Kirkland KT, Fields S, Kennedy BK (2005) Genes determining yeast replicative life span in a long-lived genetic background. Mech Ageing Dev 126: 491-504. doi: 10.1016/j.mad.2004.10.007.
  • Karathia H, Vilaprinyo E, Sorribas A, Alves R (2011) Saccharomyces cerevisiae as a model organism: a comparative study. PloS One 6: e16015. doi: 10.1371/journal.pone.0016015.
  • Kobayashi T (2008) A new role of the rDNA and nucleolus in the nucleus-rDNA instability maintains genome integrity. Bioessays 30: 267-272. doi: 10.1002/bies.20723.
  • Lindstrom DL, Leverich CK, Henderson KA, Gottschling DE (2011) Replicative age induces mitotic recombination in the ribosomal RNA gene cluster of Saccharomyces cerevisiae. PLoS Genetics 7: e1002015. doi: 10.1371/journal.pgen.1002015.
  • Molon M, Zadrag-Tecza R, Bilinski T (2015) The longevity in the yeast Saccharomyces cerevisiae: A comparison of two approaches for assessment the lifespan. Biochem Biophys Res Commun 460: 651-656. doi: 10.1016/j.bbrc.2015.03.085.
  • Mortimer RK, Johnston JR (1959) Life span of individual yeast cells. Nature 183: 1751-1752. doi: 10.1038/1831751a0.
  • Piper PW (2006) Long-lived yeast as a model for ageing research. Yeast 23: 215-226. doi: 10.1002/yea.1354.
  • Reznick DN, Bryant MJ, Roff D, Ghalambor CK, Ghalambor DE (2004) Effect of extrinsic mortality on the evolution of senescence in guppies. Nature 431: 1095-1099. doi: 10.1038/nature02936.
  • Sinclair D, Mills K, Guarente L (1998) Aging in Saccharomyces cerevisiae. Annu Rev Microbiol 52: 533-560. doi: 10.1146/annurev.micro.52.1.533.
  • Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles - a cause of aging in yeast. Cell 91: 1033-1042. doi: 10.1016/s0092-8674(00)80493-6.
  • Steinkraus KA, Kaeberlein M, Kennedy BK (2008) Replicative aging in yeast: the means to the end. Annu Rev Cell Dev Biol 24: 29-54. doi: 10.1146/annurev.cellbio.23.090506.123509.
  • Toda T, Cameron S, Sass P, Wigler M (1988) SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to, cAMP-dependent protein kinase catalytic subunits. Genes Dev 2: 517-527.
  • Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, Broach JR, De Virgilio C, Hall MN, Loewith R (2007) Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26: 663-674. doi: 10.1016/j.molcel.2007.04.020.
  • Yang J, Dungrawala H, Hua H, Manukyan A, Abraham L, Lane W, Mead H, Wright J, Schneider BL (2011) Cell size and growth rate are major determinants of replicative lifespan. Cell Cycle 10: 144-155. doi: 10.4161/cc.10.1.14455.
  • Zadrag-Tecza R, Kwolek-Mirek M, Bartosz G, Bilinski T (2009) Cell volume as a factor limiting the replicative lifespan of the yeast Saccharomyces cerevisiae. Biogerontology 10: 481-488. doi: 10.1007/s10522-008-9192-0.
  • Zadrag-Tecza R, Molon M, Mamczur J, Bilinski T (2013) Dependence of the yeast Saccharomyces cerevisiae post-reproductive lifespan on the reproductive potential. Acta Biochim Pol 60: 111-115.
  • Zadrag R, Bartosz G, Bilinski T (2008) Is the yeast a relevant model for aging of multicellular organisms? An insight from the total lifespan of Saccharomyces cerevisiae. Curr Aging Sci 1: 159-165.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv63p329kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.