Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 2 | 223-228
Article title

Effect of different wavelengths of light on laccase, cellobiose dehydrogenase, and proteases produced by Cerrena unicolor, Pycnoporus sanguineus and Phlebia lindtneri

Title variants
Languages of publication
Three species of white rot fungi: Cerrena unicolor, Phlebia lindtneri and Pycnoporus sanguineus were cultured in two different media under five different lighting conditions: dark, white, red, blue, and green light. Laccase, cellobiose dehydrogenase, and protease activities were examined in the samples. Blue light efficiently boosted laccase synthesis in C. unicolor and P. sanguineus, whereas the highest activities (20 654 nkat/l) of P. lindtneri laccase were observed when this fungus was maintained in green light. On the contrary, the green light allowed obtaining the highest activities of cellobiose dehydrogenase of C. unicolor and P. lindtneri, while CDH of P. sanguineus seems to be dependent on white light. It is clearly visible that differences in protease activities are noticeable not only between the lights variants but also among the media used. However, high proteases activities are correlated with light variants inducing laccase in Lindeberg and Holm medium. Contrary to the cellulose-based medium, where they are weak in light variants that lead to high CDH activities.
Physical description
  • Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
  • Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
  • Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
  • Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
  • Baminger U, Subramaniam SS, Renganathan V, Haltrich D (2001) Purification and characterization of cellobiose dehydrogenase from the plant pathogen Sclerotium (Athelia) rolfsii. Appl Environ Microbiol 67: 1766-1774. doi: 10.1128/Aem.67.4.1766-1774.2001.
  • Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320: 1504-1506. doi: 10.1126/science.1155888.
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254.
  • Casas-Flores S, Rios-Momberg M, Rosales-Saavedra T, Martinez-Hernandez P, Olmedo-Monfil V, Herrera-Estrella A (2006) Cross talk between a fungal blue-light perception system and the cyclic AMP signaling pathway. Eukaryot Cell 5: 499-506. doi: 10.1128/Ec.5.3.499-506.2006.
  • Chen CH, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ (2009a) Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J 28: 1029-1042. doi: 10.1038/emboj.2009.54.
  • Chen CH, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ (2009b) Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. Embo J 28: 1029-1042. doi: 10.1038/emboj.2009.54.
  • Dong W, Tang X, Yu Y, Nilsen R, Kim R, Griffith J, Arnold J, Schuttler HB (2008) Systems biology of the clock in Neurospora crassa. PLoS One 3: e3105. doi: 10.1371/journal.pone.0003105.
  • Fang J, Huang F, Gao P (1999) Optimization of cellobiose dehydrogenase production by Schizophyllum commune and effect of the enzyme on kraft pulp bleaching by ligninases. Process Biochem 34: 957-961. doi: 10.1016/S0032-9592(99)00016-3.
  • Fox EM, Howlett BJ (2008) Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11: 481-487. doi: 10.1016/j.mib.2008.10.007.
  • Habu N, Samejima M, Dean JF, Eriksson KE (1993) Release of the FAD domain from cellobiose oxidase by proteases from cellulolytic cultures of Phanerochaete chrysosporium. FEBS Lett 327: 161-164.
  • Henriksson G, Johansson G, Pettersson G (2000) A critical review of cellobiose dehydrogenases. J Biotechnol 78: 93-113.
  • Idnurm A, Heitman J (2010) Ferrochelatase is a conserved downstream target of the blue light-sensing White collar complex in fungi. Microbiology 156: 2393-2407.
  • Idnurm A, Verma S, Corrochano LM (2010) A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 47: 881-892. doi: 10.1016/j.fgb.2010.04.009.
  • Janusz G, Kucharzyk KH, Pawlik A, Staszczak M, Paszczynski AJ (2013) Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme Microb Technol 52: 1-12. doi: 10.1016/j.enzmictec.2012.10.003.
  • Janusz G, Rogalski J, Barwinska M, Szczodrak J (2006) Effects of culture conditions on production of extracellular laccase by Rhizoctonia praticola. Pol J Microbiol 55: 309-319.
  • Janusz G, Rogalski J, Szczodrak J (2007) Increased production of laccase by Cerrena unicolor in submerged liquid cultures. World J Microbiol Biotechnol 23: 1459-1464. doi: 10.1007/s11274-007-9390-y.
  • Karapetyan KN, Fedorova TV, Vasil'chenko LG, Ludwig R, Haltrich D, Rabinovich ML (2006) Properties of neutral cellobiose dehydrogenase from the ascomycete Chaetomium sp. INBI 2-26(-) and comparison with basidiomycetous cellobiose dehydrogenases. J Biotechnol 121: 34-48. doi: 10.1016/j.jbiotec.2005.06.024.
  • Kirk TK (1987) Lignin-Degrading Enzymes. Philos T Roy Soc A 321: 461-474.
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
  • Leonowicz A, Grzywnowicz K (1981) Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzyme Microb Technol 3: 55-58. doi: 10.1016/0141-0229(81)90036-3.
  • Lindeberg G, Holm G (1952) Occurrence of tyrosinase and laccase in fruit bodies and mycelia of some Hymenomycetes. Physiol Plant 5: 100-114.
  • Mayer AM (2006) Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry 67: 2318-2331. doi: 10.1016/j.phytochem.2006.08.006.
  • Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66: 920-924.
  • Purschwitz J, Muller S, Kastner C, Fischer R (2006) Seeing the rainbow: light sensing in fungi. Curr Opin Microbiol 9: 566-571. doi: 10.1016/j.mib.2006.10.011.
  • Ramirez DA, Munoz SV, Atehortua L, Michel FC, Jr. (2010) Effects of different wavelengths of light on lignin peroxidase production by the white-rot fungi Phanerochaete chrysosporium grown in submerged cultures. Bioresour Technol 101: 9213-9220. doi: 10.1016/j.biortech.2010.06.114.
  • Rosales-Saavedra T, Esquivel-Naranjo EU, Casas-Flores S, Martinez-Hernandez P, Ibarra-Laclette E, Cortes-Penagos C, Herrera-Estrella A (2006) Novel light-regulated genes in Trichoderma atroviride: a dissection by cDNA microarrays. Microbiology 152: 3305-3317. doi: 10.1099/mic.0.29000-0.
  • Schmoll M, Esquivel-Naranjo EU, Herrera-Estrella A (2010) Trichoderma in the light of day - Physiology and development. Fungal Genet Biol 47: 909-916. doi: 10.1016/j.fgb.2010.04.010.
  • Schmoll M, Franchi L, Kubicek CP (2005) Envoy, a PAS/LOV domain protein of Hypocrea jecorina (Anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot Cell 4: 1998-2007. doi: 10.1128/EC.4.12.1998-2007.2005.
  • Schmoll M, Tian CG, Sun JP, Tisch D, Glass NL (2012) Unravelling the molecular basis for light modulated cellulase gene expression - the role of photoreceptors in Neurospora crassa. BMC Genomics 13: 127. doi: 10.1186/1471-2164-13-127.
  • Smith JE, Berry DR (1974) An introduction to biochemistry of fungal development. London; New York: Academic Press.
  • Smith KM, Sancar G, Dekhang R, Sullivan CM, Li SJ, Tag AG, Sancar C, Bredeweg EL, Priest HD, McCormick RF, Thomas TL, Carrington JC, Stajich JE, Bell-Pedersen D, Brunner M, Freitag M (2010) Transcription factors in light and circadian clock signaling networks revealed by genomewide mapping of direct targets for neurospora white collar complex. Eukaryot Cell 9: 1549-1556. doi: 10.1128/Ec.00154-10.
  • Staszczak M, Zdunek E, Leonowicz A (2000) Studies on the role of proteases in the white-rot fungus Trametes versicolor: effect of PMSF and chloroquine on ligninolytic enzymes activity. J Basic Microbiol 40: 51-63.
  • Sulej J, Janusz G, Mazur A, Zuber K, Zebracka A, Rogalski J (2013a) Cellobiose dehydrogenase from the ligninolytic basidiomycete Phlebia lindtneri. Process Biochem 48: 1715-1723. doi: 10.1016/j.procbio.2013.08.003.
  • Sulej J, Janusz G, Osinska-Jaroszuk M, Malek P, Mazur A, Komaniecka I, Choma A, Rogalski J (2013b) Characterization of cellobiose dehydrogenase and its FAD-domain from the ligninolytic basidiomycete Pycnoporus sanguineus. Enzyme Microb Technol 53: 427-437. doi: 10.1016/j.enzmictec.2013.09.007.
  • Tisch D, Schmoll M (2010) Light regulation of metabolic pathways in fungi. Appl Microbiol Biotechnol 85: 1259-1277. doi: 10.1007/s00253-009-2320-1.
  • Yang Y, Fan FF, Zhuo R, Ma FY, Gong YM, Wan X, Jiang ML, Zhang XY (2012) Expression of the laccase gene from a white rot fungus in Pichia pastoris can enhance the resistance of this yeast to H2O2-mediated oxidative stress by stimulating the glutathione-based antioxidative system. Appl Environ Microbiol 78: 5845-5854. doi: 10.1128/Aem.00218-12.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.