Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 63 | 1 | 103-109

Article title

Crystal and molecular structure of hexagonal form of lipase B from Candida antarctica

Content

Title variants

Languages of publication

EN

Abstracts

EN
During crystallization screenings of commercially available hydrolytic enzymes, the new, hexagonal crystal form of CAL-B, has been discovered and hereby reported. The NAG molecules, which were closing the glycosylation site in the orthorhombic form, in hexagonal structure make the glycosylation site open. It is unknown whether the opening and closing of the glycosylation site by the 'lid' NAG molecules, could be related to the opening and closing of the active center of the enzyme upon substrate binding and product release.

Year

Volume

63

Issue

1

Pages

103-109

Physical description

Dates

published
2016
received
2015-05-21
revised
2015-10-07
accepted
2015-11-18
(unknown)
2015-12-30

Contributors

  • Lodz University of Technology, Institute of Technical Biochemistry, Łódź, Poland
  • Lodz University of Technology, Institute of Technical Biochemistry, Łódź, Poland
  • Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Heteroorganic Chemistry, Łódź, Poland
  • Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Heteroorganic Chemistry, Łódź, Poland

References

  • Alatorre-Santamaria S, Gotor-Fernandez V, Gotor V (2011) Chemoenzymatic synthesis of optically active cis- and trans-2-(1H-imidazol-1-yl)cycloalkanamines. Eur J Org Chem 6: 1057-1063.
  • Andualema B, Gessesse A (2012) Microbial lipases and their industrial applications: review. Biotechnology 11: 100-118.
  • Bornscheuer UT, Kazlauskas RJ (1999) Hydrolases in organic synthesis: regio- and stereoselective biotransformations. Wiley-VCH, Weinheim, Germany.
  • Branneby C, Carlqvist P, Hult K, Brinck T, Berglund P (2004) Aldol additions with mutant lipase: analysis by experiments and theoretical calculations. J Mol Catal B Enzym 31: 123-128.
  • Baldessari A (2012) Lipases as catalysts in synthesis of fine chemicals. Methods Mol Biol 861: 445-456.
  • Carboni-Oerlemans C, Dominguez de Maria P, Tuin B, Bargeman G, van der Meer A, van Gemert R (2006) Hydrolase-catalysed synthesis of peroxycarboxylic acids: biocatalytic promiscuity for practical applications. J Biotechnol 126: 140-151.
  • Carlqvist P, Eklund R, Hult K, Brinck T (2003) Rational design of a lipase to accommodate catalysis of Baeyer-Villiger oxidation with hydrogen peroxide. J Mol Model 9: 164-171.
  • Carlqvist P, Svedendahl M, Branneby C, Hult K, Brinck T, Berglund P (2005) Exploring the active-site of a rationally redesigned lipase for catalysis of Michael-type additions. ChemBioChem 6: 331-336.
  • Colton IJ, Yin DL, Grochulski P, Kazlauskas RJ (2011) Molecular basis of chiral acid recognition by Candida rugosa lipase: X-ray structure of transition state analog and modeling of the hydrolysis of methyl 2-methoxy-2-phenylacetate. Adv Synth Catal 353: 2529-2544.
  • Cygler M, Grochulski P, Kazlauskas RJ, Schrag JD, Bouthillier F, Rubin B, Serreqi AN, Gupta AK (1994) A structural basis for the chiral preferences of lipases. J Am Chem Soc 116: 3180-3186.
  • Deska J, Ochoa CD, Backvall JE (2010) Chemoenzymatic dynamic kinetic resolution of axially chiral allenes. Chem Eur J 16: 4447-4451.
  • Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66: 486-501.
  • Evans PR, Murshudov GN (2013) How good are my data and what is the resolution? Acta Crystallogr D Biol Crystallogr 69: 1204-1214.
  • Frykman H, Ohrner N, Norin T, Hult K (1993) S-Ethyl thiooctanoate as acyl donor in lipase-catalyzed resolution of secondary alcohols. Tetrahedron Lett 34: 1367-1370.
  • Grochulski P, Li Y, Schrag JD, Bouthillier F, Smith P, Harrison D, Rubin B, Cygler M (1993) Insights into interfacial activation from an open structure of Candida rugosa lipase. J Biol Chem 268: 12843-12847. PMID: 8509417.
  • Grochulski P, Bouthillier F, Kazlauskas RJ, Serreqi AN, Schrag JD, Ziomek E, Cygler M (1994) Analogs of reaction intermediates identify a unique substrate binding site in Candida rugosa lipase. Biochemistry 33: 3494-3500.
  • Grochulski P, Li Y, Schrag JD, Cygler M (1994) Two conformational states of Candida rugosa lipase. Protein Sci 3: 82-91.
  • Hult K, Berglund P (2007) Enzyme promiscuity: mechanism and applications. Trends Biotechnol 25: 231-238.
  • Kaczmarczyk S, Kwiatkowska M, Madalińska L, Barbachowska A, Rachwalski M, Błaszczyk J, Sieroń L, Kiełbasiński P (2011) Enzymatic synthesis of enantiopure precursors of chiral bidentate and tridentate phosphorus catalysts. Adv Synth Catal 353: 2446-2454.
  • Kiełbasiński P, Żurawiński R, Albrycht M, Mikołajczyk M (2003) The first enzymatic desymmetrizations of prochiral phosphine oxides. Tetrahedron Asymmetry 14: 3379-3384.
  • Kiełbasiński P, Mikołajczyk M (2007) Chiral heteroatom-containing compounds. In Future directions in biocatalysis. Matsuda T, ed, pp 159-203. Elsevier.
  • Kim KK, Song HK, Shin DH, Hwang KY, Suh SW (1997) The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure 5: 173-185.
  • Kim SK, Lee HH, Park YC, Jeon ST, Son SH, Min WK, Seo JH (2014) Crystal structure of Candida antarctica lipase B with anion-tag. The Protein Data Bank (PDB) entry 3W9B.
  • Kirk O, Christensen MW (2002) Lipases from Candida antarctica: unique biocatalysts from a unique origin. Org Prog Res Dev 6: 446-451.
  • Ko SB, Baburaj B, Kim MJ, Park J (2007) Air-stable racemization catalysts for the dynamic kinetic resolution of secondary alcohols. J Org Chem 72: 6860-6864.
  • Krasiński G, Cypryk M, Kwiatkowska M, Mikołajczyk M, Kiełbasiński P (2012) Molecular modeling of the lipase-catalyzed hydrolysis of acetoxymethyl(i-propoxy) phenylphosphine oxide and its P-borane analogue. J Mol Graph Model 38: 290-297.
  • Kwiatkowska M, Krasiński G, Cypryk M, Cierpiał T, Kiełbasiński P (2011) Lipase-mediated stereoselective transformations of chiral organophosphorus P-boranes revisited: revision of the absolute configuration of alkoxy(hydroxymethyl)phenylphosphine P-boranes. Tetrahedron Asymmetry 22: 1581-1590.
  • Madalińska L, Kwiatkowska M, Cierpiał T, Kiełbasiński P (2012) Investigations on enzyme catalytic promiscuity: the first attempts at a hydrolytic enzyme-promoted conjugate addition of nucleophiles to α,β-unsaturated sulfinyl acceptors. J Mol Catal B Enzym 81: 25-30.
  • Mancheno JM, Pernas MA, Martinez MJ, Ochoa B, Rua ML, Hermoso JA (2003) Structural insights into the lipase/esterase behavior in the Candida rugosa lipases family: crystal structure of the lipase 2 isoenzyme at 1.97 Å resolution. J Mol Biol 332: 1059-1069.
  • McCoy AJ (2007) Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr D Biol Crystallogr 63: 32-41.
  • Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67: 355-367.
  • Naik S, Basu A, Saikia R, Madan B, Paul P, Chaterjee R, Brask J, Svendsen A (2010) Lipases for use in industrial biocatalysis: specificity of selected structural groups of lipases. J Mol Catal B Enzym 65: 18-23.
  • Otto RT, Scheib H, Bornscheuer UT, Pleiss J, Syldatk C, Schmid RD (2000) Substrate specificity of lipase B from Candida antarctica in the synthesis of aryl aliphatic glycolipids. J Mol Catal B Enzym 8: 201-211.
  • Paravidino M, Groger H, Hanefeld U (2012) In Enzyme Catalysis in Organic Synthesis. Drauz K, Groger H, May O, eds, pp 251-362. Wiley-VCH, Weinheim, Germany.
  • Patterson LD, Miller MJ (2010) Enzymatic deprotection of the cephalosporin 3'-acetoxy group using Candida antarctica lipase B. J Org Chem 75: 1289-1292.
  • Qian Z, Horton JR, Cheng X, Lutz S (2009) Structural redesign of lipase B from Candida antarctica by circular permutation and incremental truncation. J Mol Biol 393: 191-201.
  • Rachwalski M, Kwiatkowska M, Drabowicz J, Kłos M, Wieczorek WM, Szyrej M, Sieroń L, Kiełbasiński P (2008) Enzyme-promoted desymmetrization of bis(2-hydroxymethylphenyl) sulfoxide as a route to tridentate chiral catalysts. Tetrahedron Asymmetry 19: 2096-2101.
  • Rustoy EM, Sato Y, Nonami H, Erra-Balsells R, Baldessari A (2007) Lipase-catalyzed synthesis and characterization of copolymers from ethyl acrylate as the only monomer starting material. Polymer 48: 1517-1525.
  • Santaniello E, Casati S, Ciuffreda P (2006) Lipase-catalyzed deacylation by alcoholysis: a selective, useful transesterification reaction. Curr Org Chem 10: 1095-1123.
  • Sharma D, Sharma B, Shukla AK (2011) Biotechnological approach of microbial lipase: a review. Biotechnology 10: 23-40.
  • Sharma UK, Sharma N, Kumar R, Kumar R, Sinha AK (2009) Biocatalytic promiscuity of lipase in chemoselective oxidation of aryl alcohols/acetates: a anique synergism of CAL-B and Br for the metal-free H2O2 activation. Org Lett 11: 4846-4848.
  • Singh AK, Mukhopadhyay M (2012) Overview of fungal lipase: A review. Appl Biochem Biotechnol 166: 486-520.
  • Song X, Qi X, Hao B, Qu Y (2008) Studies of substrate specificities of lipases from different sources. Eur J Lipid Sci Technol 110: 1095-1101.
  • Svedendahl M, Hult K, Berglund P (2005) Fast carbon-carbon bond formation by a promiscuous lipase. J Am Chem Soc 127: 17988-17989.
  • Uppenberg J, Hansen MT, Patkar S, Jones TA (1994) The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 2: 293-308.
  • Uppenberg J, Ohrner N, Norin M, Hult K, Kleywegt GJ, Patkar S, Waagen V, Anthonsen T, Jones TA (1995) Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols. Biochemistry 34: 16838-16851.
  • Waagen V, Hollingstaeter I, Partali V, Thorstad O, Anthonsen T (1993) Enzymatic resolution of butanoic esters of 1-phenyl, 1-phenylmethyl, 1-[2-phenylethyl] and 1-[2-phenoxyethyl]ethers of 3-methoxy-1,2-propanediol. Tetrahedron Asymmetry 4: 2265-2274.
  • Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67: 235-242.
  • Wu Q, Liu BK, Lin XF (2010) Enzymatic promiscuity for organic synthesis and cascade process. Curr Org Chem 14: 1966-1988.
  • Wu Q, Soni P, Reetz MT (2013) Laboratory evolution of enantiocomplementary Candida antarctica lipase B mutants with broad substrate scope. J Am Chem Soc 135: 1872-1881.
  • Xie Y, An J, Yang G, Wu G, Zhang Y, Cui L, Feng Y (2014) Enhanced enzyme kinetic stability by increasing rigidity within the active site. J Biol Chem 289: 7994-8006.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv63p103kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.