Preferences help
enabled [disable] Abstract
Number of results
2015 | 62 | 4 | 807-819
Article title

Surfaceome of pathogenic yeasts, Candida parapsilosis and Candida tropicalis, revealed with the use of cell surface shaving method and shotgun proteomic approach

Title variants
Languages of publication
In the course of infections caused by pathogenic yeasts from the genus Candida, the fungal cell surface is the first line of contact with the human host. As the surface-exposed proteins are the key players in these interactions, their identification can significantly contribute to discovering the mechanisms of pathogenesis of two emerging pathogens from this genus, C. parapsilosis and C. tropicalis. Therefore, the aim of the present study was to identify the cell wall-attached proteins of these two species with the use of cell surface shaving and a shotgun proteomic approach. Different morphological forms of C. parapsilosis and C. tropicalis cells obtained after growth under various conditions were subjected to this treatment. This allowed to indicate the most abundant cell surface proteins on the basis of the normalized spectral abundance factors. In case of yeast-like forms these were, among others, proteins similar to a chitinase, glyceraldehyde-3-phosphate dehydrogenase and an inducible acid phosphatase for C. parapsilosis, and a constitutive acid phosphatase, pyruvate decarboxylase and glyceraldehyde-3-phosphate dehydrogenase for C. tropicalis. In case of pseudohyphal forms, proteins similar to a cell surface mannoprotein Mp65, chitinase and glycosylphosphatidylinositol-anchored transglycosylase Crh11 were identified at the cell surface of C. parapsilosis. The Rbt1 cell wall protein, a hyphally regulated cell wall protein and proteins from agglutinin-like sequence protein family were found as the most abundant on C. tropicalis pseudohyphae. Apart from the abovementioned proteins, several additional covalently bound and atypical cell wall proteins were also identified. These results extend the current knowledge regarding the molecular basis of virulence of these two non-albicans Candida species.
Physical description
  • Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
  • Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
  • Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
  • Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
  • Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1: 845-867.
  • Arendrup MC (2013) Candida and candidaemia. Susceptibility and epidemiology. Dan Med J 60: B4698.
  • Azie N, Neofytos D, Pfaller M, Meier-Kriesche HU, Quan SP, Horn D (2012) The PATH (Prospective Antifungal Therapy) Alliance® registry and invasive fungal infections: update 2012. Diagn Microbiol Infect Dis 73: 293-300.
  • Badolato R, Wang JM, Stornello SL, Ponzi AN, Duse M, Musso T (2000) Serum amyloid A is an activator of PMN antimicrobial functions: induction of degranulation, phagocytosis, and enhancement of anti-Candida activity. J Leukoc Biol 67: 381-386.
  • Boisramé A, Cornu A, Da Costa G, Richard ML (2011) Unexpected role for a serine/threonine-rich domain in the Candida albicans Iff protein family. Eukaryot Cell 10: 1317-1330.
  • Boxx GM, Kozel TR, Nishiya CT, Zhang MX (2010) Influence of mannan and glucan on complement activation and C3 binding by Candida albicans. Infect Immun 78: 1250-1259.
  • Braun BR, Head WS, Wang MX, Johnson AD (2000) Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156: 31-44.
  • Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, et al. (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459: 657-662.
  • Caminero A, Calvo E, Valentín E, Ruiz-Herrera J, López JA, Sentandreu R (2014) Identification of Candida albicans wall mannoproteins covalently linked by disulphide and/or alkali-sensitive bridges. Yeast 31: 137-144.
  • Castillo L, Calvo E, Martínez AI, Ruiz-Herrera J, Valentín E, Lopez JA, Sentandreu R (2008) A study of the Candida albicans cell wall proteome. Proteomics 8: 3871-3881.
  • Chaffin WL (2008) Candida albicans cell wall proteins. Microbiol Mol Biol Rev 72: 495-544.
  • Crowe JD, Sievwright IK, Auld GC, Moore NR, Gow NA, Booth NA (2003) Candida albicans binds human plasminogen: identification of eight plasminogen-binding proteins. Mol Microbiol 47: 1637-1651.
  • de Groot PW, de Boer AD, Cunningham J, Dekker HL, de Jong L, Hellingwerf KJ, de Koster C, Klis FM (2004) Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell 3: 955-965.
  • de Groot PW, Kraneveld EA, Yin QY, Dekker HL, Gross U, Crielaard W, de Koster CG, Bader O, Klis FM, Weig M (2008) The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins. Eukaryot Cell 7: 1951-1964.
  • Demuyser L, Jabra-Rizk MA, Van Dijck P (2014) Microbial cell surface proteins and secreted metabolites involved in multispecies biofilms. Pathog Dis 70: 219-230.
  • Desvaux M, Dumas E, Chafsey I, Hébraud M (2006) Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure. FEMS Microbiol Lett 256: 1-15.
  • Diez-Orejas R, Molero G, Ríos-Serrano I, Vázquez A, Gil C, Nombela C, Sánchez-Pérez M (1999) Low virulence of a morphological Candida albicans mutant. FEMS Microbiol Lett 176: 311-319.
  • Eigenheer RA, Jin Lee Y, Blumwald E, Phinney BS, Gelli A (2007) Extracellular glycosylphosphatidylinositol-anchored mannoproteins and proteases of Cryptococcus neoformans. FEMS Yeast Res 7: 499-510.
  • Fernández-Arenas E, Molero G, Nombela C, Diez-Orejas R, Gil C (2004) Low virulent strains of Candida albicans: unravelling the antigens for a future vaccine. Proteomics 4: 3007-3020.
  • Free SJ (2013) Fungal cell wall organization and biosynthesis. Adv Genet 81: 33-82.
  • Gil-Bona A, Llama-Palacios A, Parra CM, Vivanco F, Nombela C, Monteoliva L, Gil C (2015a) Proteomics unravels extracellular vesicles as carriers of classical cytoplasmic proteins in Candida albicans. J Proteome Res 14: 142-153.
  • Gil-Bona A, Parra-Giraldo CM, Hernáez ML, Reales-Calderon JA, Solis NV, Filler SG, Monteoliva L, Gil C (2015b) Candida albicans cell shaving uncovers new proteins involved in cell wall integrity, yeast to hypha transition, stress response and host-pathogen interaction. J Proteomics 127: 340-351.
  • Gil-Navarro I, Gil ML, Casanova M, O'Connor JE, Martínez JP, Gozalbo D (1997) The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is a surface antigen. J Bacteriol 179: 4992-4999.
  • Gozalbo D, Gil-Navarro I, Azorín I, Renau-Piqueras J, Martínez JP, Gil ML (1998) The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infect Immun 66: 2052-2059.
  • Hecker M, Becher D, Fuchs S, Engelmann S (2010) A proteomic view of cell physiology and virulence of Staphylococcus aureus. Int J Med Microbiol 300: 76-87.
  • Hernáez ML, Ximénez-Embún P, Martínez-Gomariz M, Gutiérrez-Blázquez MD, Nombela C, Gil C (2010) Identification of Candida albicans exposed surface proteins in vivo by a rapid proteomic approach. J Proteomics 73: 1404-1409.
  • Hoyer LL, Scherer S, Shatzman AR, Livi GP (1995) Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol Microbiol 15: 39-54.
  • Huang SH, Triche T, Jong AY (2002) Infectomics: genomics and proteomics of microbial infections. Funct Integr Genomics 1: 331-344.
  • Inglis DO, Arnaud MB, Binkley J, Shah P, Skrzypek MS, Wymore F, Binkley G, Miyasato SR, Simison M, Sherlock G (2012) The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata. Nucleic Acids Res 40 (Database issue): D667-D674.
  • Insenser MR, Hernáez ML, Nombela C, Molina M, Molero G, Gil C (2010) Gel and gel-free proteomics to identify Saccharomyces cerevisiae cell surface proteins. J Proteomics 73: 1183-1195.
  • Jong AY, Chen SH, Stins MF, Kim KS, Tuan TL, Huang SH (2003) Binding of Candida albicans enolase to plasmin(ogen) results in enhanced invasion of human brain microvascular endothelial cells. J Med Microbiol 52: 615-622.
  • Karkowska-Kuleta J, Kedracka-Krok S, Rapala-Kozik M, Kamysz W, Bielinska S, Karafova A, Kozik A (2011) Molecular determinants of the interaction between human high molecular weight kininogen and Candida albicans cell wall: Identification of kininogen-binding proteins on fungal cell wall and mapping the cell wall-binding regions on kininogen molecule. Peptides 32: 2488-2496.
  • Karkowska-Kuleta J, Kozik A (2014) Moonlighting proteins as virulence factors of pathogenic fungi, parasitic protozoa and multicellular parasites. Mol Oral Microbiol 29: 270-283.
  • Karkowska-Kuleta J, Kozik A (2015) Cell wall proteome of pathogenic fungi. Acta Biochim Pol 62: 339-351.
  • Klis FM, Sosinska GJ, de Groot PW, Brul S (2009) Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence. FEMS Yeast Res 9: 1013-1028.
  • Klotz SA, Pendrak ML, Hein RC (2001) Antibodies to alpha5beta1 and alpha(v)beta3 integrins react with Candida albicans alcohol dehydrogenase. Microbiology 147: 3159-3164.
  • Krcmery V, Barnes AJ (2002) Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect 50: 243-260.
  • Lee PY, Gam LH, Yong VC, Rosli R, Ng KP, Chong PP (2014a) Identification of immunogenic proteins of Candida parapsilosis by serological proteome analysis. J Appl Microbiol 116: 999-1009.
  • Lee PY, Gam LH, Yong VC, Rosli R, Ng KP, Chong PP (2014b) Immunoproteomic analysis of antibody response to cell wall-associated proteins of Candida tropicalis. J Appl Microbiol 117: 854-865.
  • Lee SH, Chung SC, Shin J, Oh KB (2014) GST2 is required for nitrogen starvation-induced filamentous growth in Candida albicans. J Microbiol Biotechnol 24: 1207-1215.
  • Longo LV, Nakayasu ES, Matsuo AL, Peres da Silva R, Sobreira TJ, Vallejo MC, Ganiko L, Almeida IC, Puccia R (2013) Identification of human plasma proteins associated with the cell wall of the pathogenic fungus Paracoccidioides brasiliensis. FEMS Microbiol Lett 341: 87-95.
  • Lopez CM, Wallich R, Riesbeck K, Skerka C, Zipfel PF (2014) Candida albicans uses the surface protein Gpm1 to attach to human endothelial cells and to keratinocytes via the adhesive protein vitronectin. PLoS One 9: e90796.
  • López-Villar E, Monteoliva L, Larsen MR, Sachon E, Shabaz M, Pardo M, Pla J, Gil C, Roepstorff P, Nombela C (2006) Genetic and proteomic evidences support the localization of yeast enolase in the cell surface. Proteomics 6: S107-S118.
  • Luo S , Blom AM, Rupp S, Hipler UC, Hube B, Skerka C, Zipfel PF (2011) The pH-regulated antigen 1 of Candida albicans binds the human complement inhibitor C4b-binding protein and mediates fungal complement evasion. J Biol Chem 286: 8021-8029.
  • Luo S, Hoffmann R, Skerka C, Zipfel PF (2013) Glycerol-3-phosphate dehydrogenase 2 is a novel factor H-, factor H-like protein 1-, and plasminogen-binding surface protein of Candida albicans. J Infect Dis 207: 594-603.
  • Modrzewska B, Kurnatowski P (2015) Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features. Ann Parasitol 61: 3-9.
  • Nickel W, Rabouille C (2009) Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 10: 148-155.
  • Nombela C, Gil C, Chaffin WL (2006) Non-conventional protein secretion in yeast. Trends Microbiol 14: 15-21.
  • Olaya-Abril A, Jiménez-Munguía I, Gómez-Gascón L, Rodríguez-Ortega MJ (2014) Surfomics: shaving live organisms for a fast proteomic identification of surface proteins. J Proteomics 97: 164-176.
  • Peitsch MC, Tschopp J (1991) Assembly of macromolecular pores by immune defense systems. Curr Opin Cell Biol 3: 710-716.
  • Pendrak ML, Roberts DD (2007) Hemoglobin is an effective inducer of hyphal differentiation in Candida albicans. Med Mycol 45: 61-71.
  • Pitarch A, Abian J, Carrascal M, Sánchez M, Nombela C, Gil C (2004) Proteomics-based identification of novel Candida albicans antigens for diagnosis of systemic candidiasis in patients with underlying hematological malignancies. Proteomics 4: 3084-3106.
  • Pitarch A, Díez-Orejas R, Molero G, Pardo M, Sánchez M, Gil C, Nombela C (2001) Analysis of the serologic response to systemic Candida albicans infection in a murine model. Proteomics 1: 550-559.
  • Pitarch A, Nombela C, Gil C (2008) Cell wall fractionation for yeast and fungal proteomics. Methods Mol Biol 425: 217-239.
  • Pitarch A, Sánchez M, Nombela C, Gil C (2002) Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteome. Mol Cell Proteomics 1: 967-982.
  • Poltermann S, Kunert A, von der Heide M, Eck R, Hartmann A, Zipfel PF (2007) Gpm1p is a factor H-, FHL-1-, and plasminogen-binding surface protein of Candida albicans. J Biol Chem 282: 37537-37544.
  • Ramírez-Quijas MD, López-Romero E, Cuéllar-Cruz M (2015) Proteomic analysis of cell wall in four pathogenic species of Candida exposed to oxidative stress. Microb Pathog 87: 1-12.
  • Rane HS, Bernardo SM, Hayek SR, Binder JL, Parra KJ, Lee SA (2014) The contribution of Candida albicans vacuolar ATPase subunit V1B, encoded by VMA2, to stress response, autophagy, and virulence is independent of environmental pH. Eukaryot Cell 13: 1207-1221.
  • Rapala-Kozik M, Karkowska-Kuleta J, Ryzanowska A, Golda A, Barbasz A, Faussner A, Kozik A (2010) Degradation of human kininogens with the release of kinin peptides by extracellular proteinases of Candida spp. Biol Chem 391: 823-830.
  • Rivera J, Vannakambadi G, Höök M, Speziale P (2007) Fibrinogen-binding proteins of Gram-positive bacteria. Thromb Haemost 98: 503-511.
  • Sandini S, La Valle R, De Bernardis F, Macrì C, Cassone A (2007) The 65 kDa mannoprotein gene of Candida albicans encodes a putative beta-glucanase adhesin required for hyphal morphogenesis and experimental pathogenicity. Cell Microbiol 9: 1223-1238.
  • Sandini S, Stringaro A, Arancia S, Colone M, Mondello F, Murtas S, Girolamo A, Mastrangelo N, De Bernardis F (2011) The MP65 gene is required for cell wall integrity, adherence to epithelial cells and biofilm formation in Candida albicans. BMC Microbiol 11: 106.
  • Sangar VK, Cortes JM, Self LW (1975) Acid phosphatase production as an aid in rapid characterization of Candida species. Am J Med Technol 41: 327-332.
  • Severin A, Nickbarg E, Wooters J, Quazi SA, Matsuka YV, Murphy E, Moutsatsos IK, Zagursky RJ, Olmsted SB (2007) Proteomic analysis and identification of Streptococcus pyogenes surface-associated proteins. J Bacteriol 189: 1514-1522.
  • Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2: a000414.
  • Solis N, Cordwell SJ (2011) Current methodologies for proteomics of bacterial surface-exposed and cell envelope proteins. Proteomics 11: 3169-3189.
  • Solis N, Larsen MR, Cordwell SJ (2010) Improved accuracy of cell surface shaving proteomics in Staphylococcus aureus using a false-positive control. Proteomics 10: 2037-2049.
  • Sturtevant J (2000) Applications of differential-display reverse transcription-PCR to molecular pathogenesis and medical mycology. Clin Microbiol Rev 13: 408-427.
  • Thompson DS, Carlisle PL, Kadosh D (2011) Coevolution of morphology and virulence in Candida species. Eukaryot Cell 10: 1173-1182.
  • Trofa D, Gácser A, Nosanchuk JD (2008) Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev 21: 606-625.
  • Urban C, Sohn K, Lottspeich F, Brunner H, Rupp S (2003) Identification of cell surface determinants in Candida albicans reveals Tsa1p, a protein differentially localized in the cell. FEBS Lett 544: 228-235.
  • Vialás V, Perumal P, Gutierrez D, Ximénez-Embún P, Nombela C, Gil C, Chaffin WL (2012) Cell surface shaving of Candida albicans biofilms, hyphae, and yeast form cells. Proteomics 12: 2331-2339.
  • Vonk AG, De Bont N, Netea MG, Demacker PN, van der Meer JW, Stalenhoef AF, Kullberg BJ (2004) Apolipoprotein-E-deficient mice exhibit an increased susceptibility to disseminated candidiasis. Med Mycol 42: 341-348.
  • Walters MS, Mobley HL (2009) Identification of uropathogenic Escherichia coli surface proteins by shotgun proteomics. J Microbiol Methods 78: 131-135.
  • Wang H, Liu N, Yin M, Han H, Yue J, Zhang F, Shan T, Guo H, Wu D (2014) The epidemiology, antifungal use and risk factors of death in elderly patients with candidemia: a multicentre retrospective study. BMC Infect Dis 14: 609.
  • Yan S, Rodrigues RG, Cahn-Hidalgo D, Walsh TJ, Roberts DD (1998) Hemoglobin induces binding of several extracellular matrix proteins to Candida albicans. Identification of a common receptor for fibronectin, fibrinogen, and laminin. J Biol Chem 273: 5638-5644.
  • Zybailov BL, Florens L, Washburn MP (2007) Quantitative shotgun proteomics using a protease with broad specificity and normalized spectral abundance factors. Mol Biosyst 3: 354-360..
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.