PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 62 | 4 | 747-755
Article title

The phenotypic and genomic diversity of Aspergillus strains producing glucose dehydrogenase

Content
Title variants
Languages of publication
EN
Abstracts
EN
Twelve Aspergillus sp. strains producing glucose dehydrogenase were identified using ITS region sequencing. Based on the sequences obtained, the genomic relationship of the analyzed strains was investigated. Moreover, partial gdh gene sequences were determined and aligned. The amplified fragment length polymorphism (AFLP) method was applied for genomic fingerprinting of twelve Aspergillus isolates. Using one PstI restriction endonuclease and five selective primers in an AFLP assay, 556 DNA fragments were generated, including 532 polymorphic bands. The AFLP profiles were found to be highly specific for each strain and they unambiguously distinguished twelve Aspergilli fungi. The AFLP-based dendrogram generated by the UPGMA method grouped all the Aspergillus fungi studied into two major clusters. All the Aspergillus strains were also characterized using Biolog FF MicroPlates to obtain data on C-substrate utilization and mitochondrial activity. The ability to decompose various substrates differed among the analyzed strains up to three folds. All of the studied strains mainly decomposed carbohydrates.
Publisher

Year
Volume
62
Issue
4
Pages
747-755
Physical description
Dates
published
2015
received
2015-07-22
revised
2015-10-02
accepted
2015-10-30
(unknown)
2015-12-01
Contributors
author
  • Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
author
  • Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
  • Institute of Agrophysics Polish Academy of Sciences, Lublin, Poland
author
  • Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Lublin, Poland
  • Department of Biotechnology, Human Nutrition and Food Commodities, University of Life Sciences, Lublin, Poland
  • Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
  • Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
References
  • Abdalwahab SA, Ibrahim SA, Dawood ES (2012) Culture condition forthe production of glucoamylase enzyme by different isolates of Aspergillus spp. Int Food Res J 19: 1261-1266.
  • Akhter N, Morshed MA, Uddin A, Begum F, Sultan T, Azad AK (2011) Production of pectinase by Aspergillus niger cultured in solid state media. Int J Biosci 1: 33-42.
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403-410.
  • Bennett JW (1998) Mycotechnology: the role of fungi in biotechnology. J Biotechnol 66: 101-107.
  • Bignell E (2010) Aspergillus: Molecular Biology and Genomics. Machida M, Gomi K, eds, Biotechnol J 5: 336-337.
  • Blears MJ, De Grandis SA, Lee H, Trevors JT (1998) Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J Ind Microbiol Biotechnol 21: 99-114.
  • Borges MJ, Azevedo MO, Bonatelli JR, Felipe MSS, Astolfi-Filho S (1990) A practical method for the preparation of total DNA from filamentous fungi. Fungal Genet Newslett 10: 11.
  • Botton A, Ferrigo D, Scopel C, Causin R, Bonghi C, Ramina A (2008) A cDNA-AFLP approach to study ochratoxin A production in Aspergillus carbonarius. Int J Food Microbiol 127: 105-115.
  • Bruns T (2001) ITS reality. Inoculum 52: 2-3.
  • Cai JJ, Woo PC, Lau SK, Smith DK, Yuen KY (2006) Accelerated evolutionary rate may be responsible for the emergence of lineage-specific genes in ascomycota. J Mol Evol 63: 1-11.
  • David H, Hofmann G, Oliveira AP, Jarmer H (2006) Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans. Genome Biol 7.
  • Druzhinina IS, Komoń-Zelazowska M, Atanasova L, Seidl V, Kubicek CP (2010) Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLoS One 5: e9191.
  • Druzhinina IS, Schmoll M, Seiboth B, Kubicek CP (2006) Global carbon utilization profiles of wild-type, mutant, and transformant strains of Hypocrea jecorina. Appl Environ Microbiol 72: 2126-2133.
  • Ferri S, Kojima K, Sode K (2011) Review of glucose oxidases and glucose dehydrogenases: a bird's eye view of glucose sensing enzymes. J Diabetes Sci Technol 5: 1068-1076.
  • Frac M (2012) Mycological evaluation of dairy sewage sludge and its influence on functional diversity of soil microorganisms. Acta Agrophys. Monograph 1: 1-140.
  • Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Baştürkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D'Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Peñalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438: 1105-1115.
  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2: 113-118.
  • Geiser DM, Klich MA, Frisvad JC, Peterson SW, Varga J, Samson RA (2007) The current status of species recognition and identification in Aspergillus. Stud Mycol 59: 1-10.
  • Guarro J, Gene J, Stchigel AM (1999) Developments in fungal taxonomy. Clin Microbiol Rev 12: 454-500.
  • Hampl V, Pavlicek A, Flegr J (2001) Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program FreeTree: application to trichomonad parasites. Int J Syst Evol Microbiol 51: 731-735.
  • Hartigan JA (1975) Necessary and sufficient conditions for asymptotic joint normality of a statistic and its subsample values. Ann Stat 3: 573-580.
  • Hawksworth DL (2011) Naming Aspergillus species: progress towards one name for each species. Med Mycol 49 Suppl 1: S70-S76.
  • Henry T, Iwen PC, Hinrichs SH (2000) Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. J Clin Microbiol 38: 1510-1515.
  • Krijgsheld P, Bleichrodt R, van Veluw GJ, Wang F, Müller WH, Dijksterhuis J, Wösten HA (2013) Development in Aspergillus. Stud Mycol 74: 1-29.
  • Kubicek CP, Bissett J, Druzhinina I, Kullnig-Gradinger C, Szakacs G (2003) Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genet Biol 38: 310-319.
  • Lakhesar DPS, Backhouse D, Kristiansen P (2010) Nutritional constraints on displacement of Fusarium pseudograminearum from cereal straw by antagonists. Biol Control 55: 241-247.
  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.
  • Lopes FA, Steindorff AS, Geraldine AM, Brandão RS, Monteiro VN, Lobo M Jr, Coelho AS, Ulhoa CJ, Silva RN (2012) Biochemical and metabolic profiles of Trichoderma strains isolated from common bean crops in the Brazilian Cerrado, and potential antagonism against Sclerotinia sclerotiorum. Fungal Biol 116: 815-824.
  • Mohammad SH, Jahim JM, Nopiah Z, Murad AMA, Bakar FDA, Illias R (2011) Preliminary study on diverse carbon utilization by transformant Aspergillus niger. Int J Adv Sci Eng Inf Technol 2: 11-15.
  • Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14: 389-394.
  • Muller HM (1977) Gluconic acid forming enzymes in Aspergillus niger. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 132: 14-24 (author's transl).
  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76: 5269-5273.
  • Ogura Y (1951) Studies on the glucose dehydrogenase of Aspergillus oryzae. J Biochem 38: 74-84.
  • Pawlik A, Deptuła T, Targoński Z, Rogalski J, Ohga S (2012) AFLP fingerprinting of Trichoderma reesei strains. J Fac Agr Kyushu 57: 1-6.
  • Pawlik A, Janusz G, Debska I, Siwulski M, Frąc M, Rogalski J (2015) Genetic and metabolic intraspecific diversity of Ganoderma lucidum. Biomed Res Int 2015: 726149.
  • Perrone G, Susca A, Epifani F, Mule G (2006) AFLP characterization of Southern Europe population of Aspergillus Section Nigri from grapes. Int J Food Microbiol 111 (Suppl 1): S22-S27.
  • Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20: 200-206.
  • Samson RA, Varga J (2009) What is a species in Aspergillus? Med Mycol 47 (Suppl 1): S13-S20.
  • Schmidt H, Ehrmann M, Vogel RF, Taniwaki MH, Niessen L (2003) Molecular typing of Aspergillus ochraceus and construction of species specific SCAR-primers based on AFLP. Syst Appl Microbiol 26: 138-146.
  • Schmidt H, Taniwaki MH, Vogel RF, Niessen L (2004) Utilization of AFLP markers for PCR-based identification of Aspergillus carbonarius and indication of its presence in green coffee samples. J Appl Microbiol 97: 899-909.
  • Seidl V, Druzhinina IS, Kubicek CP (2006) A screening system for carbon sources enhancing beta-N-acetylglucosaminidase formation in Hypocrea atroviridis (Trichoderma atroviride). Microbiology 152: 2003-2012.
  • Shahriarin M, Abd Wahab MN, Ariff A, Mohamad R (2011) Screening, isolation and selection of cellulolytic fungi from oil palm empty fruit bunch fibre. Biotechnology (Faisalabad) 10: 108-113.
  • Suazo A, Hall HG (1999) Modification of the AFLP protocol applied to honey bee (Apis mellifera L.) DNA. BioTechniques 26: 704-705, 708-709.
  • Tryon RC (1939) Cluster analysis. Ann Arbor, Mich.: Edwards Brothers.
  • Tsujimura S, Kojima S, Kano K, Ikeda T, Sato M, Sanada H, Omura H (2006) Novel FAD-dependent glucose dehydrogenase for a dioxygen-insensitive glucose biosensor. Biosci Biotechnol Biochem 70: 654-659. doi.org/10.1271/bbb.70.654.
  • Tyrka M (2002) A simplified AFLP method for fingerprinting of common wheat (Triticum aestivum L.) cultivars. J Appl Genet 43: 131-143.
  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407-4414.
  • Warris A, Klaassen CH, Meis JF, De Ruiter MT, De Valk HA, Abrahamsen TG, Gaustad P, Verweij PE (2003) Molecular epidemiology of Aspergillus fumigatus isolates recovered from water, air, and patients shows two clusters of genetically distinct strains. J Clin Microbiol 41: 4101-4106.
  • White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications, Innis M, Gelfand D, Shinsky J, White T, ed, pp 315-322. Academic Press.
  • Wong CM, Wong KH, Chen XD (2008) Glucose oxidase: natural occurrence, function, properties and industrial applications. Appl Microbiol Biotechnol 78: 927-938.
  • Xu J (2005) Evolutionary genetics of fungi. Wymondham: Horizon Bioscience.
  • Yamashita Y, Ferri S, Huynh ML, Shimizu H, Yamaoka H, Sode K (2013) Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase. Enzyme Microb Technol 52: 123-128.
  • Zafar MN, Beden N, Leech D, Sygmund C, Ludwig R, Gorton L (2012) Characterization of different FAD-dependent glucose dehydrogenases for possible use in glucose-based biosensors and biofuel cells. Anal Bioanal Chem 402: 2069-2077.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv62p747kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.