PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 62 | 3 | 589-597
Article title

1,3-Propanediol production by Escherichia coli using genes from Citrobacter freundii atcc 8090

Content
Title variants
Languages of publication
EN
Abstracts
EN
Compared with chemical synthesis, fermentation has the advantage of mass production at low cost, and has been used in the production of various industrial chemicals. As a valuable organic compound, 1,3-propanediol (1,3-PDO) has numerous applications in the production of polymers, lubricants, cosmetics and medicines. Here, conversion of glycerol (a renewable substrate and waste from biodiesel production) to 1,3-PDO by E. coli bacterial strain carrying altered glycerol metabolic pathway was investigated. Two gene constructs containing the 1,3-PDO operon from Citrobacter freundii (pCF1 and pCF2) were used to transform the bacteria. The pCF1 gene expression construct contained dhaBCE genes encoding the three subunits of glycerol dehydratase, dhaF encoding the large subunit of the glycerol dehydratase reactivation factor and dhaG encoding the small subunit of the glycerol dehydratase reactivating factor. The pCF2 gene expression construct contained the dhaT gene encoding the 1,3-propanediol dehydrogenase. Expression of the genes cloned in the above constructs was under regulation of the T7lac promoter. RT-PCR, SDS-PAGE analyses and functional tests confirmed that 1,3-PDO synthesis pathway genes were expressed at the RNA and protein levels, and worked flawlessly in the heterologous host. In a batch flask culture, in a short time applied just to identify the 1,3-PDO in a preliminary study, the recombinant E. coli bacteria produced 1.53 g/L of 1,3-PDO, using 21.2 g/L of glycerol in 72 h. In the Sartorius Biostat B Plus reactor, they produced 11.7 g/L of 1,3-PDO using 24.2 g/L of glycerol, attaining an efficiency of 0.58 [mol1,3-PDO/molglycerol].
Publisher

Year
Volume
62
Issue
3
Pages
589-597
Physical description
Dates
published
2015
received
2015-05-14
revised
2015-06-28
accepted
2015-08-03
(unknown)
2015-09-08
Contributors
  • Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
  • Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
  • Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
  • Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
  • Polish Academy of Sciences, Institute of Human Genetics, Poznań, Poland
  • Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
  • Polish Academy of Sciences, Institute of Human Genetics, Poznań, Poland
  • Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
  • Polish Academy of Sciences, Institute of Human Genetics, Poznań, Poland
References
  • Ahrens K, Menzel K, Zeng AP, Deckwer WD (1998) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnol Bioeng 59: 544-552.
  • Biebl H (2001) Fermentation of glycerol by Clostridium pasteurianum - batch and continuous culture studies. J Ind Microbiol Biotechnol 27: 18-26.
  • Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52: 289-297.
  • Biebl H, Zeng AP, Menzel K, Deckwer WD (1998) Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Appl Microbiol Biotechnol 50: 24-29.
  • Boenigk R, Bowien S, Gottschalk G (1993) Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Appl Microbiol Biotechnol 38: 453-457.
  • Brown HS, Chuah HH (1997) Texturing of textile filament yarns based on poly(trimethylene terephthalate). Chem Fibers Int 47: 72-74.
  • Cameron DC, Altaras NE, Hoffman ML, Shaw AJ (1998) Metabolic engineering of propanediol pathways. Biotechnol Prog 14: 116-125.
  • Cheng KK, Zhang JA, Liu DH, Sun Y, Liu HJ, Yang MD, Xu JM (2007) Pilot-scale production of 1,3-propanediol using Klebsiella pneumoniae. Process Biochem 42: 740-744.
  • Chotani G, Dodge T, Hsu A, Kumar M, LaDuca R, Trimbur D, Weyler W, Sanford K (2000) The commercial production of chemicals using pathway engineering. Biochim Biophys Acta 1543: 434-455.
  • Chuah H (1996) Corterra polytrimethylene terephthalate - new polymeric fiber for carpets. Chem Fibers Int 46: 424-428.
  • Chuah H, Brown HS, Dalton PA (1995) Corterra poly(trimethylene terephthalate) - a new performance carpet fiber. Int Fiber J Available from:
  • Clomburg JM, Gonzalez R (2010) Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. Biotechnol Bioeng 108: 867-879.
  • Colin T, Bories A, Lavigne C, Moulin G (2001) Effects of acetate and butyrate during glycerol fermentation by Clostridium butyricum. Curr Microbiol 43: 238-243.
  • Daniel R, Gottschalk G (1992) Growth temperature-dependent activity of glycerol dehydratase in Escherichia coli expressing the Citrobacter freundii dha regulon. FEMS Microbiol Lett 100: 281-286.
  • Daniel R, Boenigk R, Gottschalk G (1995b) Purification of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning sequencing and overexpression of the corresponding gene in Escherichia coli. J Bacteriol 177: 2151-2156.
  • Daniel R, Stuertz K, Gottschalk G (1995a) Biochemical and molecular characterization of the oxidative branch of glycerol utilization by Citrobacter freundii. J Bacteriol 177: 4392-4401.
  • Deckwer WD (1995) Microbial conversion of glycerol to 1,3-propanediol. FEMS Microbiol Rev 16: 143-149.
  • Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94: 821-829.
  • Frazzetto G (2003) White Biotechnology. EMBO Rep 4: 835-837.
  • Forage R, Lin EC (1982) DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB418. J Bacteriol 151: 591-599.
  • Gonzalez R, Murarka A, Dharmadi Y, Yazdani SS (2008) A new model for the anaerobic fermentation of glycerol in enteric bacteria: Trunk and auxiliary pathways in Escherichia coli. Metab Eng 10: 234-45.
  • Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F, Soucaille P, Vasconcelos I (2006) Microbial conversion of glycerol to 1,3-propanediol: physiological comparison of a natural producer Clostridium butyricum VPI 3266 and an engineered strain Clostridium acetobutylicum DGI (pSPD5). Appl Environ Microbiol 72: 96-101.
  • Homann T, Tag C, Biebl H, Deckwer WD, Schink B (1990) Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol 33: 121-126.
  • Huang H, Gong CS, Tsao GT (2002) Production of 1,3-propanediol by Klebsiella pneumoniae. Appl Biochem Biotechnol 98-100: 687-698.
  • Igari S, Mori S, Takikawa Y (2000) Effects of molecular structure of aliphatic diols and polyalkylene glycol as lubricants on the wear of aluminum. Wear 244: 180-184.
  • Ikeda RA, Ligman CM, Warshamana S (1992) T7 promoter contacts essential for promoter activity in vivo. Nucleic Acids Res 20: 2517-2524.
  • Knietsch A, Bowien S, Whited G, Gottschalk G, Daniel R (2003) Identification and characterization of coenzyme B12-dependent glycerol dehydratase- and diol dehydratase-encoding genes from metagenomic DNA libraries derived from enrichment cultures. Appl Env Microbiol 69: 3048-3060.
  • Kurian JVA (2005) New polymer platform for the future-Sorona® from corn derived 1,3-propanediol. J Polym Env 13: 159-167.
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
  • Liang Q, Zhang H, Li S, Qi Q (2011) Construction of stress-induced metabolic pathway from glucose to 1,3-propanediol in Escherichia coli. Appl Microbiol Biotechnol 89: 57-62.
  • Liu H, Xu Y, Zheng Z, Liu D (2010) 1,3-Propanediol and its copolymers: Research development and industrialization. Biotechnol J 5: 1137-1148.
  • Ma Z, Rao Z, Xu L, Liao X, Fang H, Zhuge B, Zhuge J (2009) Production of 1,3-propanediol from glycerol by engineered Escherichia coli using a novel coexpression vector. Afr J Biotechnol 8: 5500-5505.
  • Ma Z, Rao Z, Xu L, Liao X, Fang H, Zhuge B, Zhuge J (2010) Expression of dha operon required for 1,3-PD formation in Escherichia coli and Saccharomyces cerevisiae. Curr Microbiol 60: 191-198.
  • Malaoui H, Marczak R (2001) Influence of glucose on glycerol metabolism by wild-type and mutant strains of Clostridium butyricum E5 grown in chemostatic culture. Appl Microbiol Biotechnol 55: 226-233.
  • Malinowski J (1999) Evaluation of liquid extraction potentials for downstream separation of 1,3-propanediol. Biotechnol Tech 13: 127-130.
  • Menzel K, Zeng AP, Deckwer WD (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb Tech 20: 82-86.
  • Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14: 454-459.
  • Nakas JP, Schaedle M, Parkinson CM, Coonley CE, Tanenbaum SW (1983) System development for linked-fermentation products of solvents from algal biomass. Appl Environ Microbiol 46: 1017-1023.
  • Németh A, Kupcsulik B, Sevella B (2003) 1,3-propanediol oxidoreductase production with Klebsiella pneumoniae DSM2026. World J Microb Biot 19: 659-663.
  • Nuc P, Nuc K (2006) Produkcja rekombinowanych białek w Escherichia coli. Postępy Biochemii 52: 448-456. Available from:
  • Papanikolaou S, Fick M, Aggelis G (2004) The effect of raw glycerol concentration on the production of 1,3-propanediol by Clostridium butyricum. J Chem Technol Biotechnol 79: 1189-1196.
  • Pflugmacher U, Gottschalk G (1994) Development of an immobilized cell reactor for the production of 1,3-propanediol by Citrobacter freundii. Appl Microbiol Biotechnol 41: 313-316.
  • Qi X, Deng W, Wang F, Guo Q, Chen H, Wang L, He X, Huang R (2013) Molecular cloning, co-expression, and characterization of glycerol dehydratase and 1,3-propanediol dehydrogenase from Citrobacter freundii. Mol Biotechnol 54: 469-474.
  • Rehman A, Matsumura M, Nomura N, Sato S (2008) Growth and 1,3-propanediol production on pre-treated sunflower oil bio-diesel raw glycerol using a strict anaerobe Clostridium butyricum. Curr Res Bacteriol 1: 7-16.
  • Sambrook J, Russel DW (2001) Molecular cloning a laboratory manual vols. 1-3. ColdSpring Harbour New York: Cold Spring Harbour Laboratory Press.
  • Sauer M, Marx H, Mattanovich D (2008) Microbial production of 1,3-propanediol. Recent Pat Biotechnol 2: 191-197.
  • Schutz H, Radler F (1984) Anaerobic reduction of glycerol to 1,3-propanediol by Lactobacillus brevis and Lactobacillus buchneri. Syst Appl Microbiol 5: 169-178.
  • Seifert C, Bowien S, Gottschalk G, Daniel R (2001) Identification and expression of the genes and purification and characterization of the genes products involved in reactivation of coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii. Eur J Biochem 268: 2369-2378.
  • Seo JW, Seo MY, Oh BR, Heo SY, Baek JO, Rairakhwada D, Luo LH, Hong WK, Kim CH (2010) Identification and utilization of a 1,3-propanediol oxidoreductase isoenzyme for production of 1,3-propanediol from glycerol in Klebsiella pneumoniae. Appl Microbiol Biotechnol 85: 659-666.
  • Seyfried M, Daniel R, Gottschalk G (1996) Cloning, sequencing, and over expression of the genes encoding coenz B12-dependent glycerol dehydratase of Citrobacter freundii. J Bacteriol 178: 5793-5796.
  • Shell Chemical Company (1995) Shell Chemical Company announces commercialization of new polymer (Press release).
  • Skraly FA, Lytle BL, Cameron DC (1998) Construction and characterization of a 1,3-propanediol operon. Appl Environ Microbiol 64: 98-105.
  • Tang X, Tan Y, Zhu H, Zhao K, Shen W (2009) Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Appl Environ Microbiol 75: 1628-1634.
  • Tong IT, Liao HH, Cameron DC (1991) 1,3-Propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae DHA regulon. Appl Environ Microbiol 57: 3541-3546.
  • Tong LT, Cameron DC (1992) Enhancement of 1,3-propanediol production by co-fermentation in Escherichia coli expressing genes from Klebsiella pneumoniae dha regulon genes. Appl Biochem Biotechnol 34-35: 149-159.
  • Zeng AP, Biebl H (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng/Biotechnol 74: 239-259.
  • Zhang XM, Tang XM, Zhuge B, Shen W, Rao ZM, Fang HY, Zhuge J (2005) Construction of novel recombinant Escherichia coli capable of producing 1,3-propanediol. Sheng Wu Gong Cheng Xue Bao 21: 743-747.
  • Zhao YN, Chen G, Yao SJ (2006) Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae. Biochem Eng J 32: 93-99.
  • Zhu MM, Lawman PD, Cameron DC (2002) Improving 1,3-propanediol production from glycerol in a metabolically engineered Escherichia coli by reducing accumulation of sn-glycerol-3-phosphate. Biotechnol Prog 18: 694-699.
  • Zhu MM, Skraly FA, Cameron DC (2001) Accumulation of methylglyoxal in anaerobically grown Escherichia coli and its detoxification by expression of the Pseudomonas putida glyoxalase I gene. Metab Eng 3: 218-225.
  • Zhuge B, Zhang C, Fang H, Zhuge J, Permaul K (2010) Expression of 1,3-propanediol oxidoreductase and its isoenzyme in Klebsiella pneumoniae for bioconversion of glycerol into 1,3-propanediol. Appl Microbiol Biotechnol 87: 2177-2184.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv62p589kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.