Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 62 | 3 | 367-381

Article title

Proteomics in studies of Staphylococcus aureus virulence

Content

Title variants

Languages of publication

EN

Abstracts

EN
Staphylococcus aureus is a widespread, opportunistic pathogen that causes community and hospital acquired infections. Its high pathogenicity is driven by multifactorial and complex mechanisms determined by the ability of the bacterium to express a wide variety of virulence factors. The proteome secreted into extracellular milieu is a rich reservoir of such factors which include mainly nonenzymatic toxins and enzymes. Simultaneously, membrane proteins, membrane-cell wall interface proteins and cell wall-associated proteins also strongly influence staphylococcal virulence. Proteomics shows a great potential in exploring the role of the extracellular proteome in cell physiology, including the pathogenic potential of particular strains of staphylococci. In turn, understanding the bacterial physiology including the interconnections of particular factors within the extracellular proteomes is a key to the development of the ever needed, novel antibacterial strategies. Here, we briefly overview the latest applications of gel-based and gel-free proteomic techniques in the identification of the virulence factors within S. aureus secretome and surfacome. Such studies are of utmost importance in understanding the host-pathogen interactions, analysis of the role of staphylococcal regulatory systems and also the detection of posttranslational modifications emerging as important modifiers of the infection process.

Year

Volume

62

Issue

3

Pages

367-381

Physical description

Dates

published
2015
received
2015-03-19
revised
2015-05-26
accepted
2015-06-29
(unknown)
2015-08-26

Contributors

author
  • Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
author
  • Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
  • Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
  • Malopolska Centre for Biotechnology, Kraków, Poland

References

  • Allard M, Moisan H, Brouillette E, Gervais AL, Jacques M, Lacasse P, Diarra MS, Malouin F (2006) Transcriptional modulation of some Staphylococcus aureus iron-regulated genes during growth in vitro and in a tissue cage model in vivo. Microbes Infect 8: 1679-1690.
  • Ammons MC, Tripet BP, Carlson RP, Kirker KR, Gross MA, Stanisich JJ, Copie V (2014) Quantitative NMR metabolite profiling of methicillin-resistant and methicillin-susceptible Staphylococcus aureus discriminates between biofilm and planktonic phenotypes. J Proteome Res 13: 2973-2985.
  • Armengaud J (2013) Microbiology and proteomics, getting the best of both worlds! Environ Microbiol 15: 12-23.
  • Arvidson S, Tegmark K (2001) Regulation of virulence determinants in Staphylococcus aureus. Int J Med Microbiol 291: 159-170.
  • Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K, Oguchi A, Nagai Y, Iwama N, Asano K, Naimi T, Kuroda H, Cui L, Yamamoto K, Hiramatsu K (2002) Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359: 1819-1827.
  • Basell K, Otto A, Junker S, Zuhlke D, Rappen GM, Schmidt S, Hentschker C, Macek B, Ohlsen K, Hecker M, Becher D (2014) The phosphoproteome and its physiological dynamics in Staphylococcus aureus. Int J Med Microbiol 304: 121-132.
  • Becher D, Hempel K, Sievers S, Zuhlke D, Pane-Farre J, Otto A, Fuchs S, Albrecht D, Bernhardt J, Engelmann S, Volker U, van Dijl JM, Hecker M (2009) A proteomic view of an important human pathogen--towards the quantification of the entire Staphylococcus aureus proteome. PLoS One 4: e8176.
  • Bergmann U, Ahrends R, Neumann B, Scheler C, Linscheid MW (2012) Application of metal-coded affinity tags (MeCAT): absolute protein quantification with top-down and bottom-up workflows by metal-coded tagging. Anal Chem 84: 5268-5275.
  • Boucher HW, Corey GR (2008) Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis 46 Suppl 5: S344-S349.
  • Bronner S, Monteil H, Prevost G (2004) Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol Rev 28: 183-200.
  • Bukowski M, Wladyka B, Dubin G (2010) Exfoliative toxins of Staphylococcus aureus. Toxins (Basel) 2: 1148-1165.
  • Burlak C, Hammer CH, Robinson MA, Whitney AR, McGavin MJ, Kreiswirth BN, Deleo FR (2007) Global analysis of community-associated methicillin-resistant Staphylococcus aureus exoproteins reveals molecules produced in vitro and during infection. Cell Microbiol 9: 1172-1190.
  • Burnside K, Lembo A, de Los Reyes M, Iliuk A, Binhtran NT, Connelly JE, Lin WJ, Schmidt BZ, Richardson AR, Fang FC, Tao WA, Rajagopal L (2010) Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase. PLoS One 5: e11071.
  • Cantin GT, Yi W, Lu B, Park SK, Xu T, Lee JD, Yates JR, 3rd (2008) Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res 7: 1346-1351.
  • Carneiro CR, Postol E, Nomizo R, Reis LF, Brentani RR (2004) Identification of enolase as a laminin-binding protein on the surface of Staphylococcus aureus. Microbes Infect 6: 604-608.
  • Chan PF, Foster SJ (1998) The role of environmental factors in the regulation of virulence-determinant expression in Staphylococcus aureus 8325-4. Microbiology 144: 2469-2479.
  • Chao TC, Hansmeier N (2012) The current state of microbial proteomics: where we are and where we want to go. Proteomics 12: 638-650.
  • Chen C, Wu D, Zhang L, Zhao Y, Guo L (2012) Comparative phosphoproteomics studies of macrophage response to bacterial virulence effectors. Journal of Proteomics 77: 251-261.
  • Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q (2005) VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 33: D325-D328.
  • Cheung AL, Koomey JM, Butler CA, Projan SJ, Fischetti VA (1992) Regulation of exoprotein expression in Staphylococcus aureus by a locus (sar) distinct from agr. Proc Natl Acad Sci U S A 89: 6462-6466.
  • Cohen P (2000) The regulation of protein function by multisite phosphorylation--a 25 year update. Trends Biochem Sci 25: 596-601.
  • Cordwell SJ, Larsen MR, Cole RT, Walsh BJ (2002) Comparative proteomics of Staphylococcus aureus and the response of methicillin-resistant and methicillin-sensitive strains to Triton X-100. Microbiology 148: 2765-2781.
  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49: 711-745.
  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284: 1318-1322.
  • Cremieux AC, Dumitrescu O, Lina G, Vallee C, Cote JF, Muffat-Joly M, Lilin T, Etienne J, Vandenesch F, Saleh-Mghir A (2009) Panton-valentine leukocidin enhances the severity of community-associated methicillin-resistant Staphylococcus aureus rabbit osteomyelitis. PLoS One 4: e7204.
  • Curreem SO, Watt RM, Lau SK, Woo PC (2012) Two-dimensional gel electrophoresis in bacterial proteomics. Protein Cell 3: 346-363.
  • Debarbouille M, Dramsi S, Dussurget O, Nahori MA, Vaganay E, Jouvion G, Cozzone A, Msadek T, Duclos B (2009) Characterization of a serine/threonine kinase involved in virulence of Staphylococcus aureus. J Bacteriol 191: 4070-4081.
  • Dinges MM, Orwin PM, Schlievert PM (2000) Exotoxins of Staphylococcus aureus. Clin Microbiol Rev 13: 16-34.
  • Dreisbach A, Hempel K, Buist G, Hecker M, Becher D, van Dijl JM (2010) Profiling the surfacome of Staphylococcus aureus. Proteomics 10: 3082-3096.
  • Dreisbach A, van der Kooi-Pol MM, Otto A, Gronau K, Bonarius HP, Westra H, Groen H, Becher D, Hecker M, van Dijl JM (2011a) Surface shaving as a versatile tool to profile global interactions between human serum proteins and the Staphylococcus aureus cell surface. Proteomics 11: 2921-2930.
  • Dreisbach A, van Dijl JM, Buist G (2011b) The cell surface proteome of Staphylococcus aureus. Proteomics 11: 3154-3168.
  • Drummelsmith J, Winstall E, Bergeron MG, Poirier GG, Ouellette M (2007) Comparative proteomics analyses reveal a potential biomarker for the detection of vancomycin-intermediate Staphylococcus aureus strains. J Proteome Res 6: 4690-4702.
  • Dubin G, Koziel J, Pyrc K, Wladyka B, Potempa J (2013) Bacterial proteases in disease - role in intracellular survival, evasion of coagulation/ fibrinolysis innate defenses, toxicoses and viral infections. Curr Pharm Des 19: 1090-1113.
  • Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg G, Wu S, Brown EL, Zagursky RJ, Shlaes D, Projan SJ (2001) Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183: 7341-7353.
  • Dutta S, Iida K, Takade A, Meno Y, Nair GB, Yoshida S (2004) Release of Shiga toxin by membrane vesicles in Shigella dysenteriae serotype 1 strains and in vitro effects of antimicrobials on toxin production and release. Microbiol Immunol 48: 965-969.
  • Enany S, Yoshida Y, Magdeldin S, Zhang Y, Bo X, Yamamoto T (2012) Extensive proteomic profiling of the secretome of European community acquired methicillin resistant Staphylococcus aureus clone. Peptides 37: 128-137.
  • Enany S, Yoshida Y, Yamamoto T (2014) Exploring extra-cellular proteins in methicillin susceptible and methicillin resistant Staphylococcus aureus by liquid chromatography-tandem mass spectrometry. World J Microbiol Biotechnol 30: 1269-1283.
  • Engelmann S, Hecker M (2009) A Proteomics View of Virulence Factors of Staphylococcus aureus. Genome Dyn 6: 187-197.
  • Eymann C, Becher D, Bernhardt J, Gronau K, Klutzny A, Hecker M (2007) Dynamics of protein phosphorylation on Ser/Thr/Tyr in Bacillus subtilis. Proteomics 7: 3509-3526.
  • Fagerquist CK, Sultan O (2013) Top-down proteomic identification of furin-cleaved alpha-subunit of Shiga toxin 2 from Escherichia coli O157:H7 using MALDI-TOF-TOF-MS/MS. J Biomed Biotechnol 2010: 123460.
  • Feng J, Michalik S, Varming AN, Andersen JH, Albrecht D, Jelsbak L, Krieger S, Ohlsen K, Hecker M, Gerth U, Ingmer H, Frees D (2013) Trapping and proteomic identification of cellular substrates of the ClpP protease in Staphylococcus aureus. J Proteome Res 12: 547-558.
  • Forrester MT, Foster MW (2012) Protection from nitrosative stress: a central role for microbial flavohemoglobin. Free Radic Biol Med 52: 1620-1633.
  • Foster TJ (2009) Colonization and infection of the human host by staphylococci: adhesion, survival and immune evasion. Vet Dermatol 20: 456-470.
  • Foster TJ, Hook M (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6: 484-488.
  • Francois P, Scherl A, Hochstrasser D, Schrenzel J (2010) Proteomic approaches to study Staphylococcus aureus pathogenesis. J Proteomics 73: 701-708.
  • Frees D, Andersen JH, Hemmingsen L, Koskenniemi K, Baek KT, Muhammed MK, Gudeta DD, Nyman TA, Sukura A, Varmanen P, Savijoki K (2012) New insights into Staphylococcus aureus stress tolerance and virulence regulation from an analysis of the role of the ClpP protease in the strains Newman, COL, and SA564. J Proteome Res 11: 95-108.
  • Gardner PR, Gardner AM, Martin LA, Salzman AL (1998) Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc Natl Acad Sci U S A 95: 10378-10383.
  • Garnak M, Reeves HC (1979) Phosphorylation of Isocitrate dehydrogenase of Escherichia coli. Science 203: 1111-1112.
  • Gatlin CL, Pieper R, Huang ST, Mongodin E, Gebregeorgis E, Parmar PP, Clark DJ, Alami H, Papazisi L, Fleischmann RD, Gill SR, Peterson SN (2006) Proteomic profiling of cell envelope-associated proteins from Staphylococcus aureus. Proteomics 6: 1530-1549.
  • Ge R, Shan W (2011) Bacterial phosphoproteomic analysis reveals the correlation between protein phosphorylation and bacterial pathogenicity. Genomics Proteomics Bioinformatics 9: 119-127.
  • Gil C, Solano C, Burgui S, Latasa C, Garcia B, Toledo-Arana A, Lasa I, Valle J (2014) Biofilm matrix exoproteins induce a protective immune response against Staphylococcus aureus biofilm infection. Infect Immun 82: 1017-1029.
  • Glowalla E, Tosetti B, Kronke M, Krut O (2009) Proteomics-based identification of anchorless cell wall proteins as vaccine candidates against Staphylococcus aureus. Infect Immun 77: 2719-2729.
  • Goerke C, Fluckiger U, Steinhuber A, Bisanzio V, Ulrich M, Bischoff M, Patti JM, Wolz C (2005) Role of Staphylococcus aureus global regulators sae and sigmaB in virulence gene expression during device-related infection. Infect Immun 73: 3415-3421.
  • Gurung M, Moon DC, Choi CW, Lee JH, Bae YC, Kim J, Lee YC, Seol SY, Cho DT, Kim SI, Lee JC (2011) Staphylococcus aureus produces membrane-derived vesicles that induce host cell death. PLoS One 6: e27958.
  • Hecker M, Becher D, Fuchs S, Engelmann S (2010) A proteomic view of cell physiology and virulence of Staphylococcus aureus. Int J Med Microbiol 300: 76-87.
  • Hempel K, Herbst FA, Moche M, Hecker M, Becher D (2011) Quantitative proteomic view on secreted, cell surface-associated, and cytoplasmic proteins of the methicillin-resistant human pathogen Staphylococcus aureus under iron-limited conditions. J Proteome Res 10: 1657-1666.
  • Henderson B, Martin A (2011) Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun 79: 3476-3491.
  • Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269: 400-393.
  • Hessling B, Bonn F, Otto A, Herbst FA, Rappen GM, Bernhardt J, Hecker M, Becher D (2013) Global proteome analysis of vancomycin stress in Staphylococcus aureus. Int J Med Microbiol 303: 624-634.
  • Hochgrafe F, Wolf C, Fuchs S, Liebeke M, Lalk M, Engelmann S, Hecker M (2008) Nitric oxide stress induces different responses but mediates comparable protein thiol protection in Bacillus subtilis and Staphylococcus aureus. J Bacteriol 190: 4997-5008.
  • Hong SW, Kim MR, Lee EY, Kim JH, Kim YS, Jeon SG, Yang JM, Lee BJ, Pyun BY, Gho YS, Kim YK (2011) Extracellular vesicles derived from Staphylococcus aureus induce atopic dermatitis-like skin inflammation. Allergy 66: 351-359.
  • Hussain M, Huygens F (2012) Proteomic and bioinformatics tools to understand virulence mechanisms in Staphylococcus aureus. Current Proteomics 9: 2-8.
  • Islam N, Kim Y, Ross JM, Marten MR (2014) Proteomic analysis of Staphylococcus aureus biofilm cells grown under physiologically relevant fluid shear stress conditions. Proteome Sci 12: 21.
  • Jones RC, Deck J, Edmondson RD, Hart ME (2008) Relative quantitative comparisons of the extracellular protein profiles of Staphylococcus aureus UAMS-1 and its sarA, agr, and sarA agr regulatory mutants using one-dimensional polyacrylamide gel electrophoresis and nanocapillary liquid chromatography coupled with tandem mass spectrometry. J Bacteriol 190: 5265-5278.
  • Khandelwal P, Banerjee-Bhatnagar N (2003) Insecticidal activity associated with the outer membrane vesicles of Xenorhabdus nematophilus. Appl Environ Microbiol 69: 2032-2037.
  • Khoon LY, Neela V (2010) Secretome of Staphylococcus aureus. African J Microbiol Res 4: 500-508.
  • Kluge S, Hoffmann M, Benndorf D, Rapp E, Reichl U (2012) Proteomic tracking and analysis of a bacterial mixed culture. Proteomics 12: 1893-1901.
  • Kohler C, Wolff S, Albrecht D, Fuchs S, Becher D, Buttner K, Engelmann S, Hecker M (2005) Proteome analyses of Staphylococcus aureus in growing and non-growing cells: a physiological approach. Int J Med Microbiol 295: 547-565.
  • Kolar SL, Ibarra JA, Rivera FE, Mootz JM, Davenport JE, Stevens SM, Horswill AR, Shaw LN (2013) Extracellular proteases are key mediators of Staphylococcus aureus virulence via the global modulation of virulence-determinant stability. Microbiologyopen 2: 18-34.
  • Kondo K, Takade A, Amako K (1993) Release of the outer membrane vesicles from Vibrio cholerae and Vibrio parahaemolyticus. Microbiol Immunol 37: 149-152.
  • Krishna S, Miller LS (2012) Host-pathogen interactions between the skin and Staphylococcus aureus. Curr Opin Microbiol 15: 28-35.
  • Kuehn MJ, Kesty NC (2005) Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev 19: 2645-2655.
  • Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi A, Aoki K, Nagai Y, Lian J, Ito T, Kanamori M, Matsumaru H, Maruyama A, Murakami H, Hosoyama A, Mizutani-Ui Y, Takahashi NK, Sawano T, Inoue R, Kaito C, Sekimizu K, Hirakawa H, Kuhara S, Goto S, Yabuzaki J, Kanehisa M, Yamashita A, Oshima K, Furuya K, Yoshino C, Shiba T, Hattori M, Ogasawara N, Hayashi H, Hiramatsu K (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357: 1225-1240.
  • Kusch H, Engelmann S (2014) Secrets of the secretome in Staphylococcus aureus. Int J Med Microbiol 304: 133-141.
  • Laabei M, Jamieson WD, Yang Y, van den Elsen J, Jenkins AT (2014) Investigating the lytic activity and structural properties of Staphylococcus aureus phenol soluble modulin (PSM) peptide toxins. Biochim Biophys Acta 1838: 3153-3161.
  • Le Marechal C, Jardin J, Jan G, Even S, Pulido C, Guibert JM, Hernandez D, Francois P, Schrenzel J, Demon D, Meyer E, Berkova N, Thiery R, Vautor E, Le Loir Y (2011a) Staphylococcus aureus seroproteomes discriminate ruminant isolates causing mild or severe mastitis. Vet Res 42: 35.
  • Le Marechal C, Seyffert N, Jardin J, Hernandez D, Jan G, Rault L, Azevedo V, Francois P, Schrenzel J, van de Guchte M, Even S, Berkova N, Thiery R, Fitzgerald JR, Vautor E, Le Loir Y (2011b) Molecular basis of virulence in Staphylococcus aureus mastitis. PLoS One 6: e27354.
  • Lee EY, Choi DY, Kim DK, Kim JW, Park JO, Kim S, Kim SH, Desiderio DM, Kim YK, Kim KP, Gho YS (2009) Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 9: 5425-5436.
  • Levine A, Vannier F, Absalon C, Kuhn L, Jackson P, Scrivener E, Labas V, Vinh J, Courtney P, Garin J, Seror SJ (2006) Analysis of the dynamic Bacillus subtilis Ser/Thr/Tyr phosphoproteome implicated in a wide variety of cellular processes. Proteomics 6: 2157-2173.
  • Li Y, Huang X, Li J, Zeng J, Zhu F, Fan W, Hu L (2014) Both GtfA and GtfB are required for SraP glycosylation in Staphylococcus aureus. Curr Microbiol 69: 121-126.
  • Liew YK, Awang Hamat R, van Belkum A, Chong PP, Neela V (2015) Comparative Exoproteomics and Host Inflammatory Response in Staphylococcus aureus Skin and Soft Tissue Infections, Bacteremia, and Subclinical Colonization. Clin Vaccine Immunol 22: 593-603.
  • Lin MH, Hsu TL, Lin SY, Pan YJ, Jan JT, Wang JT, Khoo KH, Wu SH (2009) Phosphoproteomics of Klebsiella pneumoniae NTUH-K2044 reveals a tight link between tyrosine phosphorylation and virulence. Mol Cell Proteomics 8: 2613-2623.
  • Liu J, Liu Y, Gao M, Zhang X (2012) An accurate proteomic quantification method: fluorescence labeling absolute quantification (FLAQ) using multidimensional liquid chromatography and tandem mass spectrometry. Proteomics 12: 2258-2270.
  • Lizcano A, Sanchez CJ, Orihuela CJ (2012) A role for glycosylated serine-rich repeat proteins in gram-positive bacterial pathogenesis. Mol Oral Microbiol 27: 257-269.
  • Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339: 520-532.
  • Mahan MJ, Slauch JM, Mekalanos JJ (1993) Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259: 686-688.
  • Majerczyk CD, Sadykov MR, Luong TT, Lee C, Somerville GA, Sonenshein AL (2008) Staphylococcus aureus CodY negatively regulates virulence gene expression. J Bacteriol 190: 2257-2265.
  • Malachowa N, Kobayashi SD, Braughton KR, Whitney AR, Parnell MJ, Gardner DJ, Deleo FR (2012) Staphylococcus aureus leukotoxin GH promotes inflammation. J Infect Dis 206: 1185-1193.
  • Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382: 669-678.
  • Mayrand D, Grenier D (1989) Biological activities of outer membrane vesicles. Can J Microbiol 35: 607-613.
  • McAdow M, Missiakas DM, Schneewind O (2012) Staphylococcus aureus secretes coagulase and von Willebrand factor binding protein to modify the coagulation cascade and establish host infections. J Innate Immun 4: 141-148.
  • McNulty DE, Annan RS (2009) Hydrophilic interaction chromatography for fractionation and enrichment of the phosphoproteome. Methods Mol Biol 527: 93-105.
  • Modun B, Morrissey J, Williams P (2000) The staphylococcal transferrin receptor: a glycolytic enzyme with novel functions. Trends Microbiol 8: 231-237.
  • Morfeldt E, Janzon L, Arvidson S, Lofdahl S (1988) Cloning of a chromosomal locus (exp) which regulates the expression of several exoprotein genes in Staphylococcus aureus. Mol Gen Genet 211: 435-440.
  • Muntel J, Hecker M, Becher D (2012) An exclusion list based label-free proteome quantification approach using an LTQ Orbitrap. Rapid Commun Mass Spectrom 26: 701-709.
  • Muthukrishnan G, Quinn GA, Lamers RP, Diaz C, Cole AL, Chen S, Cole AM (2011) Exoproteome of Staphylococcus aureus reveals putative determinants of nasal carriage. J Proteome Res 10: 2064-2078.
  • Nandakumar R, Nandakumar MP, Marten MR, Ross JM (2005) Proteome analysis of membrane and cell wall associated proteins from Staphylococcus aureus. J Proteome Res 4: 250-257.
  • National Nosocomial Infections Surveillance System (2004) National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 32: 470-485.
  • O'Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007-4021.
  • Ohlsen K, Donat S (2010) The impact of serine/threonine phosphorylation in Staphylococcus aureus. Int J Med Microbiol 300: 137-141.
  • Otto A, van Dijl JM, Hecker M, Becher D (2014) The Staphylococcus aureus proteome. Int J Med Microbiol 304: 110-120.
  • Pasztor L, Ziebandt AK, Nega M, Schlag M, Haase S, Franz-Wachtel M, Madlung J, Nordheim A, Heinrichs DE, Gotz F (2010) Staphylococcal major autolysin (Atl) is involved in excretion of cytoplasmic proteins. J Biol Chem 285: 36794-36803.
  • Peng HL, Novick RP, Kreiswirth B, Kornblum J, Schlievert P (1988) Cloning, characterization, and sequencing of an accessory gene regulator (agr) in Staphylococcus aureus. J Bacteriol 170: 4365-4372.
  • Peres AG, Madrenas J (2013) The broad landscape of immune interactions with Staphylococcus aureus: from commensalism to lethal infections. Burns 39: 380-388.
  • Pfortner H, Wagner J, Surmann K, Hildebrandt P, Ernst S, Bernhardt J, Schurmann C, Gutjahr M, Depke M, Jehmlich U, Dhople V, Hammer E, Steil L, Volker U, Schmidt F (2013) A proteomics workflow for quantitative and time-resolved analysis of adaptation reactions of internalized bacteria. Methods 61: 244-250.
  • Pocsfalvi G, Cacace G, Cuccurullo M, Serluca G, Sorrentino A, Schlosser G, Blaiotta G, Malorni A (2008) Proteomic analysis of exoproteins expressed by enterotoxigenic Staphylococcus aureus strains. Proteomics 8: 2462-2476.
  • Price J, Gordon NC, Crook D, Llewelyn M, Paul J (2013) The usefulness of whole genome sequencing in the management of Staphylococcus aureus infections. Clin Microbiol Infect 19: 784-789.
  • Pustelny K, Stach N, Wladyka B, Dubin A, Dubin G (2014) Evaluation of P1' substrate specificity of staphylococcal SplB protease. Acta Biochim Pol 61: 149-152.
  • Rajagopal L, Clancy A, Rubens CE (2003) A eukaryotic type serine/threonine kinase and phosphatasein Streptococcus agalactiae reversibly phosphorylate an inorganic pyrophosphatase and affect growth, cell segregation, and virulence. J Biol Chem 278: 14429-14441.
  • Ravichandran A, Sugiyama N, Tomita M, Swarup S, Ishihama Y (2009) Ser/Thr/Tyr phosphoproteome analysis of pathogenic and non-pathogenic Pseudomonas species. Proteomics 9: 2764-2775.
  • Ravipaty S, Reilly JP (2010) Comprehensive characterization of methicillin-resistant Staphylococcus aureus subsp. aureus COL secretome by two-dimensional liquid chromatography and mass spectrometry. Mol Cell Proteomics 9: 1898-1919.
  • Reid CW, Fulton KM, Twine SM (2010) Never take candy from a stranger: the role of the bacterial glycome in host-pathogen interactions. Future Microbiol 5: 267-288.
  • Resch A, Leicht S, Saric M, Pasztor L, Jakob A, Gotz F, Nordheim A (2006) Comparative proteome analysis of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling. Proteomics 6: 1867-1877.
  • Rivera FE, Miller HK, Kolar SL, Stevens SM Jr, Shaw LN (2012) The impact of CodY on virulence determinant production in community-associated methicillin-resistant Staphylococcus aureus. Proteomics 12: 263-268.
  • Rogasch K, Ruhmling V, Pane-Farre J, Hoper D, Weinberg C, Fuchs S, Schmudde M, Broker BM, Wolz C, Hecker M, Engelmann S (2006) Influence of the two-component system SaeRS on global gene expression in two different Staphylococcus aureus strains. J Bacteriol 188: 7742-7758.
  • Scherl A, Francois P, Bento M, Deshusses JM, Charbonnier Y, Converset V, Huyghe A, Walter N, Hoogland C, Appel RD, Sanchez JC, Zimmermann-Ivol CG, Corthals GL, Hochstrasser DF, Schrenzel J (2005) Correlation of proteomic and transcriptomic profiles of Staphylococcus aureus during the post-exponential phase of growth. J Microbiol Methods 60: 247-257.
  • Schmidt F, Scharf SS, Hildebrandt P, Burian M, Bernhardt J, Dhople V, Kalinka J, Gutjahr M, Hammer E, Volker U (2010) Time-resolved quantitative proteome profiling of host-pathogen interactions: the response of Staphylococcus aureus RN1HG to internalisation by human airway epithelial cells. Proteomics 10: 2801-2811.
  • Schmidt F, Volker U (2011) Proteome analysis of host-pathogen interactions: Investigation of pathogen responses to the host cell environment. Proteomics 11: 3203-3211.
  • Schulein R, Guye P, Rhomberg TA, Schmid MC, Schroder G, Vergunst AC, Carena I, Dehio C (2005) A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. Proc Natl Acad Sci U S A 102: 856-861.
  • Shah IM, Laaberki MH, Popham DL, Dworkin J (2008) A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135: 486-496.
  • Skaar EP, Schneewind O (2004) Iron-regulated surface determinants (Isd) of Staphylococcus aureus: stealing iron from heme. Microbes Infect 6: 390-397.
  • Smith A, McCann M, Kavanagh K (2013) Proteomic analysis of the proteins released from Staphylococcus aureus following exposure to Ag(I). Toxicol In Vitro 27: 1644-1648.
  • Solis N, Larsen MR, Cordwell SJ (2010) Improved accuracy of cell surface shaving proteomics in Staphylococcus aureus using a false-positive control. Proteomics 10: 2037-2049.
  • Soufi B, Gnad F, Jensen PR, Petranovic D, Mann M, Mijakovic I, Macek B (2008a) The Ser/Thr/Tyr phosphoproteome of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins. Proteomics 8: 3486-3493.
  • Soufi B, Jers C, Hansen ME, Petranovic D, Mijakovic I (2008b) Insights from site-specific phosphoproteomics in bacteria. Biochim Biophys Acta 1784: 186-192.
  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358: 135-138.
  • Sugimoto S, Iwamoto T, Takada K, Okuda K, Tajima A, Iwase T, Mizunoe Y (2013) Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction. J Bacteriol 195: 1645-1655.
  • Surmann K, Michalik S, Hildebrandt P, Gierok P, Depke M, Brinkmann L, Bernhardt J, Salazar MG, Sun Z, Shteynberg D, Kusebauch U, Moritz RL, Wollscheid B, Lalk M, Volker U, Schmidt F (2014) Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells. Front Microbiol 5: 392.
  • Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18: 2071-2077.
  • Upreti RK, Kumar M, Shankar V (2003) Bacterial glycoproteins: functions, biosynthesis and applications. Proteomics 3: 363-379.
  • Ventura CL, Malachowa N, Hammer CH, Nardone GA, Robinson MA, Kobayashi SD, DeLeo FR (2010) Identification of a novel Staphylococcus aureus two-component leukotoxin using cell surface proteomics. PLoS One 5: e11634.
  • Waldvogel FA (1995) Staphylococcus aureus (including toxic shock syndrome). In Principles and Practice of Infectious Diseases, Mandel GL, Bennett JE, Dolin R ed, pp 1754-1777. New York: Churchill Livingstone.
  • Waridel P, Ythier M, Gfeller A, Moreillon P, Quadroni M (2012) Evidence for a new post-translational modification in Staphylococcus aureus: hydroxymethylation of asparagine and glutamine. J Proteomics 75: 1742-1751.
  • Watkins RR, David MZ, Salata RA (2012) Current concepts on the virulence mechanisms of meticillin-resistant Staphylococcus aureus. J Med Microbiol 61: 1179-1193.
  • Weber H, Engelmann S, Becher D, Hecker M (2004) Oxidative stress triggers thiol oxidation in the glyceraldehyde-3-phosphate dehydrogenase of Staphylococcus aureus. Mol Microbiol 52: 133-140.
  • Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1996) Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13: 19-50.
  • Wolf C, Hochgrafe F, Kusch H, Albrecht D, Hecker M, Engelmann S (2008) Proteomic analysis of antioxidant strategies of Staphylococcus aureus: diverse responses to different oxidants. Proteomics 8: 3139-3153.
  • Wu HJ, Wang AH, Jennings MP (2008) Discovery of virulence factors of pathogenic bacteria. Curr Opin Chem Biol 12: 93-101.
  • Yang XY, Lu J, Sun X, He QY (2012) Application of subproteomics in the characterization of Gram-positive bacteria. J Proteomics 75: 2803-2810.
  • Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11: 49-79.
  • Zecconi A, Scali F (2013) Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol Lett 150: 12-22.
  • Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR, 3rd (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113: 2343-2394.
  • Zhou M, Wu H (2009) Glycosylation and biogenesis of a family of serine-rich bacterial adhesins. Microbiology 155: 317-327.
  • Ziebandt AK, Becher D, Ohlsen K, Hacker J, Hecker M, Engelmann S (2004) The influence of agr and sigmaB in growth phase dependent regulation of virulence factors in Staphylococcus aureus. Proteomics 4: 3034-3047.
  • Ziebandt AK, Kusch H, Degner M, Jaglitz S, Sibbald MJ, Arends JP, Chlebowicz MA, Albrecht D, Pantucek R, Doskar J, Ziebuhr W, Broker BM, Hecker M, van Dijl JM, Engelmann S (2010) Proteomics uncovers extreme heterogeneity in the Staphylococcus aureus exoproteome due to genomic plasticity and variant gene regulation. Proteomics 10: 1634-1644.
  • Ziebandt AK, Weber H, Rudolph J, Schmid R, Hoper D, Engelmann S, Hecker M (2001) Extracellular proteins of Staphylococcus aureus and the role of SarA and sigma B. Proteomics 1: 480-493.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv62p367kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.