PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 62 | 3 | 339-351
Article title

Cell wall proteome of pathogenic fungi

Content
Title variants
Languages of publication
EN
Abstracts
EN
A fast development of a wide variety of proteomic techniques supported by mass spectrometry coupled with high performance liquid chromatography has been observed in recent years. It significantly contributes to the progress in research on the cell wall, very important part of the cells of pathogenic fungi. This complicated structure composed of different polysaccharides, proteins, lipids and melanin, plays a key role in interactions with the host during infection. Changes in the set of the surface-exposed proteins under different environmental conditions provide an effective way for pathogens to respond, adapt and survive in the new niches of infection. This work summarizes the current state of knowledge on proteins, studied both qualitatively and quantitatively, and found within the cell wall of fungal pathogens for humans, including Candida albicans, Candida glabrata, Aspergillus fumigatus, Cryptococcus neoformans and other medically important fungi. The described proteomic studies involved the isolation and fractionation of particular sets of proteins of interest with various techniques, often based on differences in their linkages to the polysaccharide scaffold. Furthermore, the proteinaceous contents of extracellular vesicles ("virulence bags") of C. albicans, C. neoformans, Histoplasma capsulatum and Paracoccidioides brasiliensis are compared, because their production can partially explain the problem of non-classical protein secretion by fungi. The role assigned to surface-exposed proteins in pathogenesis of fungal infections is enormously high, thus justifying the need for further investigation of cell wall proteomes.
Publisher

Year
Volume
62
Issue
3
Pages
339-351
Physical description
Dates
published
2015
received
2015-04-21
revised
2015-04-28
accepted
2015-04-30
(unknown)
2015-07-21
Contributors
  • Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
author
  • Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
References
  • Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, Clavaud C, Paris S, Brakhage AA, Kaveri SV, Romani L, Latgé JP (2009) Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460: 1117-1121.
  • Albuquerque PC, Nakayasu ES, Rodrigues ML, Frases S, Casadevall A, Zancope-Oliveira RM, Almeida IC, Nosanchuk JD (2008) Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cell Microbiol 10: 1695-1710.
  • Almeida RS, Brunke S, Albrecht A, Thewes S, Laue M, Edwards JE, Filler SG, Hube B (2008) The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog 4: e1000217.
  • Almeida RS, Wilson D, Hube B (2009) Candida albicans iron acquisition within the host. FEMS Yeast Res 9: 1000-1012.
  • Asif AR, Oellerich M, Amstrong VW, Riemenschneider B, Monod M, Reichard U (2006) Proteome of conidial surface associated proteins of Aspergillus fumigatus reflecting potential vaccine candidates and allergens. J Proteome Res 5: 954-962.
  • Azie N, Neofytos D, Pfaller M, Meier-Kriesche HU, Quan SP, Horn D (2012) The PATH (Prospective Antifungal Therapy) Alliance® registry and invasive fungal infections: update 2012. Diagn Microbiol Infect Dis 73: 293-300.
  • Barreto-Bergter E, Figueiredo RT (2014) Fungal glycans and the innate immune recognition. Front Cell Infect Microbiol 4: 145.
  • Beauvais A, Fontaine T, Aimanianda V, Latgé JP (2014) Aspergillus cell wall and biofilm. Mycopathologia 178: 371-377.
  • Bernard M, Latgé JP (2001) Aspergillus fumigatus cell wall: composition and biosynthesis. Med Mycol 39: 9-17.
  • Bernard M, Mouyna I, Dubreucq G, Debeaupuis JP, Fontaine T, Vorgias C, Fuglsang C, Latgé JP (2002) Characterization of a cell-wall acid phosphatase (PhoAp) in Aspergillus fumigatus. Microbiology 148: 2819-2829.
  • Boisramé A, Cornu A, Da Costa G, Richard ML (2011) Unexpected role for a serine/threonine-rich domain in the Candida albicans Iff protein family. Eukaryot Cell 10: 1317-1330.
  • Bruneau JM, Magnin T, Tagat E, Legrand R, Bernard M, Diaquin M, Fudali C, Latgé JP (2001) Proteome analysis of Aspergillus fumigatus identifies glycosylphosphatidylinositol-anchored proteins associated to the cell wall biosynthesis. Electrophoresis 22: 2812-2823.
  • Cagas SE, Jain MR, Li H, Perlin DS (2011a) The proteomic signature of Aspergillus fumigatus during early development. Mol Cell Proteomics 10: M111.010108.
  • Cagas SE, Jain MR, Li H, Perlin DS (2011b) Profiling the Aspergillus fumigatus proteome in response to caspofungin. Antimicrob Agents Chemother 55: 146-154.
  • Carrion Sde J, Leal SM Jr, Ghannoum MA, Aimanianda V, Latgé JP, Pearlman E (2013) The RodA hydrophobin on Aspergillus fumigatus spores masks dectin-1- and dectin-2-dependent responses and enhances fungal survival in vivo. J Immunol 191: 2581-2588.
  • Castillo L, Calvo E, Martínez AI, Ruiz-Herrera J, Valentín E, Lopez JA, Sentandreu R (2008) A study of the Candida albicans cell wall proteome. Proteomics 8: 3871-3881.
  • Castro Nda S, de Castro KP, Orlandi I, Feitosa Ldos S, Rosa e Silva LK, Vainstein MH, Báo SN, Vai M, Soares CM (2009) Characterization and functional analysis of the beta-1,3-glucanosyltransferase 3 of the human pathogenic fungus Paracoccidioides brasiliensis. FEMS Yeast Res 9: 103-114.
  • Champer J, Diaz-Arevalo D, Champer M, Hong TB, Wong M, Shannahoff M, Ito JI, Clemons KV, Stevens DA, Kalkum M (2012) Protein targets for broad-spectrum mycosis vaccines: quantitative proteomic analysis of Aspergillus and Coccidioides and comparisons with other fungal pathogens. Ann N Y Acad Sci 1273: 44-51.
  • Chaffin WL (2008) Candida albicans cell wall proteins. Microbiol Mol Biol Rev 72: 495-544.
  • Chaturvedi AK, Weintraub ST, Lopez-Ribot JL, Wormley FL Jr (2013) Identification and characterization of Cryptococcus neoformans protein fractions that induce protective immune responses. Proteomics 13: 3429-3441.
  • Chaudhuri R, Ansari FA, Raghunandanan MV, Ramachandran S (2011) FungalRV: adhesin prediction and immunoinformatics portal for human fungal pathogens. BMC Genomics 12: 192.
  • Chauhan N (2009) Preparation of samples for proteomic analysis of the Candida albicans cell wall. Methods Mol Biol 499: 149-155.
  • Dagenais TR, Keller NP (2009) Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clin Microbiol Rev 22: 447-465.
  • Davis D, Edwards JE Jr, Mitchell AP, Ibrahim AS (2000) Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infect Immun 68: 5953-5959.
  • de Groot PW, de Boer AD, Cunningham J, Dekker HL, de Jong L, Hellingwerf KJ, de Koster C, Klis FM (2004) Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell 3: 955-965.
  • de Groot PW, Hellingwerf KJ, Klis FM (2003) Genome-wide identification of fungal GPI proteins. Yeast 20: 781-796.
  • de Groot PW, Kraneveld EA, Yin QY, Dekker HL, Gross U, Crielaard W, de Koster CG, Bader O, Klis FM, Weig M (2008) The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins. Eukaryot Cell 7: 1951-1964.
  • Dubey LK, Moeller JB, Schlosser A, Sorensen GL, Holmskov U (2014) Induction of innate immunity by Aspergillus fumigatus cell wall polysaccharides is enhanced by the composite presentation of chitin and beta-glucan. Immunobiology 219: 179-188.
  • Ebanks RO, Chisholm K, McKinnon S, Whiteway M, Pinto DM (2006) Proteomic analysis of Candida albicans yeast and hyphal cell wall and associated proteins. Proteomics 6: 2147-2156.
  • Ecker M, Deutzmann R, Lehle L, Mrsa V, Tanner W (2006) Pir proteins of Saccharomyces cerevisiae are attached to beta-1,3-glucan by a new protein-carbohydrate linkage. J Biol Chem 281: 11523-11529.
  • Eigenheer RA, Jin Lee Y, Blumwald E, Phinney BS, Gelli A (2007) Extracellular glycosylphosphatidylinositol-anchored mannoproteins and proteases of Cryptococcus neoformans. FEMS Yeast Res 7: 499-510.
  • Eisenman HC, Nosanchuk JD, Webber JB, Emerson RJ, Camesano TA, Casadevall A (2005) Microstructure of cell wall-associated melanin in the human pathogenic fungus Cryptococcus neoformans. Biochemistry 44: 3683-3693.
  • Ene IV, Heilmann CJ, Sorgo AG, Walker LA, de Koster CG, Munro CA, Klis FM, Brown AJ (2012) Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans. Proteomics 12: 3164-3179.
  • Free SJ (2013) Fungal cell wall organization and biosynthesis. Adv Genet 81: 33-82.
  • Gautam P, Shankar J, Madan T, Sirdeshmukh R, Sundaram CS, Gade WN, Basir SF, Sarma PU (2008) Proteomic and transcriptomic analysis of Aspergillus fumigatus on exposure to amphotericin B. Antimicrob Agents Chemother 52: 4220-4227.
  • Gautam P, Upadhyay SK, Hassan W, Madan T, Sirdeshmukh R, Sundaram CS, Gade WN, Basir SF, Singh Y, Sarma PU (2011) Transcriptomic and proteomic profile of Aspergillus fumigatus on exposure to artemisinin. Mycopathologia 172: 331-346.
  • Guimarães AJ, de Cerqueira MD, Nosanchuk JD (2011) Surface architecture of Histoplasma capsulatum. Front Microbiol 2: 225.
  • Guinea J (2014) Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect 20: 5-10.
  • Heilmann CJ, Sorgo AG, Klis FM (2012) News from the fungal front: wall proteome dynamics and host-pathogen interplay. PLoS Pathog 8: e1003050.
  • Heilmann CJ, Sorgo AG, Mohammadi S, Sosinska GJ, de Koster CG, Brul S, de Koning LJ, Klis FM (2013) Surface stress induces a conserved cell wall stress response in the pathogenic fungus Candida albicans. Eukaryot Cell 12: 254-264.
  • Heilmann CJ, Sorgo AG, Siliakus AR, Dekker HL, Brul S, de Koster CG, de Koning LJ, Klis FM (2011) Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile. Microbiology 157: 2297-2307.
  • Hernáez ML, Ximénez-Embún P, Martínez-Gomariz M, Gutiérrez-Blázquez MD, Nombela C, Gil C (2010) Identification of Candida albicans exposed surface proteins in vivo by a rapid proteomic approach. J Proteomics 73: 1404-1409.
  • Hope W, Natarajan P, Goodwin L (2013) Invasive fungal infections. Clin Med 13: 507-510.
  • Jacobsen ID, Wilson D, Wächtler B, Brunke S, Naglik JR, Hube B (2012) Candida albicans dimorphism as a therapeutic target. Expert Rev Anti Infect Ther 10: 85-93.
  • Kanetsuna F, Carbonell LM (1970) Cell wall glucans of the yeast and mycelial forms of Paracoccidioides brasiliensis. J Bacteriol 101: 675-680.
  • Kanetsuna F, Carbonell LM, Gil F, Azuma I (1974) Chemical and ultrastructural studies on the cell walls of the yeastlike and mycelial forms of Histoplasma capsulatum. Mycopathol Mycol Appl 54: 1-13.
  • Kapteyn JC, Montijn RC, Dijkgraaf GJ, Van den Ende H, Klis FM (1995) Covalent association of beta-1,3-glucan with beta-1,6-glucosylated mannoproteins in cell walls of Candida albicans. J Bacteriol 177: 3788-3792.
  • Karkowska-Kuleta J, Kozik A (2014) Moonlighting proteins as virulence factors of pathogenic fungi, parasitic protozoa and multicellular parasites. Mol Oral Microbiol 29: 270-283.
  • Karkowska-Kuleta J, Rapala-Kozik M, Kozik A (2009) Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Acta Biochim Pol 56: 211-224.
  • Klis FM, Boorsma A, De Groot PW (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23: 185-202.
  • Klis FM, de Koster CG, Brul S (2011) A mass spectrometric view of the fungal wall proteome. Future Microbiol 6: 941-951.
  • Kniemeyer O, Lessing F, Brakhage AA (2009) Proteome analysis for pathogenicity and new diagnostic markers for Aspergillus fumigatus. Med Mycol 47: S248-254.
  • Kniemeyer O, Schmidt AD, Vödisch M, Wartenberg D, Brakhage AA (2011) Identification of virulence determinants of the human pathogenic fungi Aspergillus fumigatus and Candida albicans by proteomics. Int J Med Microbiol 301: 368-377.
  • Köhler JR, Casadevall A, Perfect J (2014) The Spectrum of Fungi That Infects Humans. Cold Spring Harb Perspect Med 5: a019273.
  • Kraneveld EA, de Soet JJ, Deng DM, Dekker HL, de Koster CG, Klis FM, Crielaard W, de Groot PW (2011) Identification and differential gene expression of adhesin-like wall proteins in Candida glabrata biofilms. Mycopathologia 172: 415-427.
  • Law KP, Lim YP (2013) Recent advances in mass spectrometry: data independent analysis and hyper reaction monitoring. Expert Rev Proteomics 10: 551-566.
  • Lee PY, Gam LH, Yong VC, Rosli R, Ng KP, Chong PP (2014a) Identification of immunogenic proteins of Candida parapsilosis by serological proteome analysis. J Appl Microbiol 116: 999-1009.
  • Lee PY, Gam LH, Yong VC, Rosli R, Ng KP, Chong PP (2014b) Immunoproteomic analysis of antibody response to cell wall-associated proteins of Candida tropicalis. J Appl Microbiol 117: 854-865.
  • Levitz SM (2010) Innate recognition of fungal cell walls. PLoS Pathog 6: e1000758.
  • Maddi A, Bowman SM, Free SJ (2009) Trifluoromethanesulfonic acid-based proteomic analysis of cell wall and secreted proteins of the ascomycetous fungi Neurospora crassa and Candida albicans. Fungal Genet Biol 46: 768-781.
  • Mao Y, Zhang Z, Gast C, Wong B (2008) C-terminal signals regulate targeting of glycosylphosphatidylinositol-anchored proteins to the cell wall or plasma membrane in Candida albicans. Eukaryot Cell 7: 1906-1915.
  • Marcilla A, Elorza MV, Mormeneo S, Rico H, Sentandreu R (1991) Candida albicans mycelial wall structure: supramolecular complexes released by zymolyase, chitinase and beta-mercaptoethanol. Arch Microbiol 155: 312-319.
  • Mårdh PA, Rodrigues AG, Genç M, Novikova N, Martinez-de-Oliveira J, Guaschino S (2002) Facts and myths on recurrent vulvovaginal candidosis-a review on epidemiology, clinical manifestations, diagnosis, pathogenesis and therapy. Int J STD AIDS 13: 522-539.
  • Maroszynska M, Kunicka-Styczynska A, Rajkowska K, Maroszynska I (2013) Antibiotics sensitivity of Candida clinical and food-borne isolates. Acta Biochim Pol 60: 719-724.
  • Martínez-Gomariz M, Perumal P, Mekala S, Nombela C, Chaffin WL, Gil C (2009) Proteomic analysis of cytoplasmic and surface proteins from yeast cells, hyphae, and biofilms of Candida albicans. Proteomics 9: 2230-2252.
  • Nickel W (2003) The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem 270: 2109-2119.
  • Nickel W (2011) The unconventional secretory machinery of fibroblast growth factor 2. Traffic 12: 799-805.
  • Nickel W, Rabouille C (2009) Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 10: 148-155.
  • Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438: 1151-1156.
  • Nombela C, Gil C, Chaffin WL (2006) Non-conventional protein secretion in yeast. Trends Microbiol 14: 15-21.
  • Orlean P, Menon AK (2007) Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res 48: 993-1011.
  • Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23: 525-530.
  • Park JN, Lee DJ, Kwon O, Oh DB, Bahn YS, Kang HA (2012) Unraveling unique structure and biosynthesis pathway of N-linked glycans in human fungal pathogen Cryptococcus neoformans by glycomics analysis. J Biol Chem 287: 19501-19515.
  • Pihet M, Vandeputte P, Tronchin G, Renier G, Saulnier P, Georgeault S, Mallet R, Chabasse D, Symoens F, Bouchara JP (2009) Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia. BMC Microbiol 9: 177.
  • Pitarch A, Nombela C, Gil C (2008) Cell wall fractionation for yeast and fungal proteomics. Methods Mol Biol 425: 217-239.
  • Pitarch A, Sánchez M, Nombela C, Gil C (2002) Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteome. Mol Cell Proteomics 1: 967-982.
  • Pittet M, Conzelmann A (2007) Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1771: 405-420.
  • Plaine A, Walker L, Da Costa G, Mora-Montes HM, McKinnon A, Gow NA, Gaillardin C, Munro CA, Richard ML (2008) Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity. Fungal Genet Biol 45: 1404-1414.
  • Puccia R, Vallejo MC, Matsuo AL, Longo LV (2011) The Paracoccidioides cell wall: past and present layers toward understanding interaction with the host. Front Microbiol 2: 257.
  • Quindós G (2014) Epidemiology of candidaemia and invasive candidiasis. A changing face. Rev Iberoam Micol 31: 42-48.
  • Rodrigues ML, Nakayasu ES, Almeida IC, Nimrichter L (2014) The impact of proteomics on the understanding of functions and biogenesis of fungal extracellular vesicles. J Proteomics 97: 177-186.
  • Rodrigues ML, Nakayasu ES, Oliveira DL, Nimrichter L, Nosanchuk JD, Almeida IC, Casadevall A (2008) Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 7: 58-67.
  • Ruiz-Herrera J, Elorza MV, Valentín E, Sentandreu R (2006) Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res 6: 14-29.
  • Rüping MJ, Vehreschild JJ, Cornely OA (2008) Patients at high risk of invasive fungal infections: when and how to treat. Drugs 68: 1941-1962.
  • Sorais F, Barreto L, Leal JA, Bernabé M, San-Blas G, Niño-Vega GA (2010) Cell wall glucan synthases and GTPases in Paracoccidioides brasiliensis. Med Mycol 48: 35-47.
  • Sorgo AG, Brul S, de Koster CG, de Koning LJ, Klis FM (2013) Iron restriction-induced adaptations in the wall proteome of Candida albicans. Microbiology 159: 1673-1682.
  • Sorgo AG, Heilmann CJ, Dekker HL, Bekker M, Brul S, de Koster CG, de Koning LJ, Klis FM (2011) Effects of fluconazole on the secretome, the wall proteome, and wall integrity of the clinical fungus Candida albicans. Eukaryot Cell 10: 1071-1081.
  • Sosinska GJ, de Groot PW, Teixeira de Mattos MJ, Dekker HL, de Koster CG, Hellingwerf KJ, Klis FM (2008) Hypoxic conditions and iron restriction affect the cell-wall proteome of Candida albicans grown under vagina-simulative conditions. Microbiology 154: 510-520.
  • Sosinska GJ, de Koning LJ, de Groot PW, Manders EM, Dekker HL, Hellingwerf KJ, de Koster CG, Klis FM (2011) Mass spectrometric quantification of the adaptations in the wall proteome of Candida albicans in response to ambient pH. Microbiology 157: 136-146.
  • Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283: 1535-1538.
  • Sudbery P, Gow N, Berman J (2004) The distinct morphogenic states of Candida albicans. Trends Microbiol 12: 317-324.
  • Sukhithasri V, Nisha N, Biswas L, Anil Kumar V, Biswas R (2013) Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions. Microbiol Res 168: 396-406.
  • Tada R, Latgé JP, Aimanianda V (2013) Undressing the fungal cell wall/cell membrane--the antifungal drug targets. Curr Pharm Des 19: 3738-3747.
  • Thomas DP, Bachmann SP, Lopez-Ribot JL (2006) Proteomics for the analysis of the Candida albicans biofilm lifestyle. Proteomics 6: 5795-5804.
  • Vallejo MC, Nakayasu ES, Matsuo AL, Sobreira TJ, Longo LV, Ganiko L, Almeida IC, Puccia R (2012) Vesicle and vesicle-free extracellular proteome of Paracoccidioides brasiliensis: comparative analysis with other pathogenic fungi. J Proteome Res 11: 1676-1685.
  • Vargas G, Rocha JD, Oliveira DL, Albuquerque PC, Frases S, Santos SS, Nosanchuk JD, Gomes AM, Medeiros LC, Miranda K, Sobreira TJ, Nakayasu ES, Arigi EA, Casadevall A, Guimaraes AJ, Rodrigues ML, Freire-de-Lima CG, Almeida IC, Nimrichter L (2015) Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell Microbiol 17: 389-407.
  • Vialás V, Perumal P, Gutierrez D, Ximénez-Embún P, Nombela C, Gil C, Chaffin WL (2012) Cell surface shaving of Candida albicans biofilms, hyphae, and yeast form cells. Proteomics 12: 2331-2339.
  • Weig M, Jänsch L, Gross U, De Koster CG, Klis FM, De Groot PW (2004) Systematic identification in silico of covalently bound cell wall proteins and analysis of protein-polysaccharide linkages of the human pathogen Candida glabrata. Microbiology 150: 3129-3144.
  • Weissman Z, Kornitzer D (2004) A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 53: 1209-1220.
  • Whiteway M, Oberholzer U (2004) Candida morphogenesis and host-pathogen interactions. Curr Opin Microbiol 7: 350-357.
  • Yin QY, de Groot PW, de Koster CG, Klis FM (2008) Mass spectrometry-based proteomics of fungal wall glycoproteins. Trends Microbiol 16: 20-26.
  • Young M, Macias S, Thomas D, Wormley FL Jr (2009) A proteomic-based approach for the identification of immunodominant Cryptococcus neoformans proteins. Proteomics 9: 2578-2588.
  • Zaragoza O, Rodrigues ML, De Jesus M, Frases S, Dadachova E, Casadevall A (2009) The capsule of the fungal pathogen Cryptococcus neoformans. Adv Appl Microbiol 68: 133-216.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv62p339kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.