Preferences help
enabled [disable] Abstract
Number of results
2015 | 62 | 1 | 1-6
Article title

Chlamydial plasmids and bacteriophages

Title variants
Languages of publication
Chlamydia are absolute pathogens of humans and animals; despite being rather well recognised, they are still open for discovery. One such discovery is the occurrence of extrachromosomal carriers of genetic information. In prokaryotes, such carriers include plasmids and bacteriophages, which are present only among some Chlamydia species. Plasmids were found exclusively in Chlamydia (C.) trachomatis, C. psittaci, C. pneumoniae, C. suis, C. felis, C. muridarum and C. caviae. In prokaryotic organisms, plasmids usually code for genes that facilitate survival of the bacteria in the environment (although they are not essential). In chlamydia, their role has not been definitely recognised, apart from the fact that they participate in the synthesis of glycogen and encode proteins responsible for their virulence. Furthermore, in C. suis it was evidenced that the plasmid is integrated in a genomic island and contains the tetracycline-resistance gene. Bacteriophages specific for chlamydia (chlamydiaphages) were detected only in six species: C. psittaci, C. abortus, C. felis, C. caviae C. pecorum and C. pneumoniae. These chlamydiaphages cause inhibition of the developmental cycle, and delay transformation of reticulate bodies (RBs) into elementary bodies (EBs), thus reducing the possibility of infecting other cells in time. Plasmids and bacteriophages can be used in the diagnostics of chlamydioses; although especially in the case of plasmids, they are already used for detection of chlamydial infections. In addition, bacteriophages could be used as therapeutic agents to replace antibiotics, potentially addressing the problem of increasing antibiotic-resistance among chlamydia.
Physical description
  • Department of Microbiology, Faculty of Biology, University of Szczecin, Szczecin, Poland
  • Department of Microbiology, Faculty of Biology, University of Szczecin, Szczecin, Poland
  • Department of Microbiology, Faculty of Biology, University of Szczecin, Szczecin, Poland
  • AbdelRahman YM, Rose LA, Belland RJ (2011) Developmental expression of non-coding RNAs in Chlamydia trachomatis during normal and persistent growth. Nucleic Acids Res 39: 1843-1854.
  • An Q, Radcliffe G, Vassallo R, Buxton D, O'Brien W J, Pelletier DA, Weisburg WG, Klinger JD, Olive M (1992) Infection with a plasmid-free variant chlamydia related to Chlamydia trachomatis identified by using multiple assays for nucleic acid detection. J Clin Microbiol 30: 2814-2821.
  • Azuma Y, Hirakawa H, Yamashita A, Cai Y, Rahman MA, Suzuki H, Mitaku S, Toh H, Goto S, Murakami T, Sugi K, Hayashi H, Fukushi H, Hattori M, Kuhara S, Shirai M (2006) Genome sequence of the cat pathogen Chlamydophila felis. DNA Res 13: 15-23.
  • Bernhardt TG, Roof WD, Young R (2000) Genetic evidence that the bacteriophage φX174 lysis protein inhibits cell wall synthesis. Proc Natl Acad Sci 97: 4297-4302.
  • Carlson JH, Porcella SF, McClarty G, Caldwell HD (2005) Comparative genomic analysis of Chlamydia trachomatis oculotropic and genitotropic strains. Infect Immun 73: 6407-6418.
  • Carlson JH, Whitmire WM, Crane DD, Wicke L, Virtaneva K, Sturdevant DE, Kupko JJ 3rd, Porcella SF, Martinez-Orengo N, Heinzen RA, Kari L, Caldwell HD (2008) The Chlamydia trachomatis plasmid is a transcriptional regulator of chromosomal genes and a virulence factor. Infect Immun 76: 2273-2283.
  • Clokie MR, Millard AD, Letarov AV, Heaphy S (2011) Phages in nature. Bacteriophage 1: 31-45.
  • Comanducci M, Manetti R, Bini L, Santucci A, Pallini V, Cevenini R, Sueur JM, Orfila J, Ratti G (1994) Humoral immune response to plasmid protein pgp3 in patients with Chlamydia trachomatis infection. Infect Immun 62: 5491-5497.
  • Comanducci M, Ricci S, Cevenini R, Ratti G (1990) Diversity of the Chlamydia trachomatis common plasmid in biovars with different pathogenicity. Plasmid 23: 149-154.
  • Comanducci M, Ricci S, Ratti G (1988) The structure of a plasmid of Chlamydia trachomatis belived to be required for growth within mammalian cells. Mol Microbiol 2: 531-538.
  • Di Francesco A, Donati M, Salvatore D, Cevenini R, Di Paolo M, Baldelli R (2010) Chlamydophila felis: plasmid detection in Italian isolates. New Microbiol 33: 163-166.
  • Donati M, Sambri V, Comanducci M, Di Leo K, Storni E, Giacani L, Ratti G, Cevenini R (2003) DNA immunization with pgp3 gene of Chlamydia trachomatis inhibits the spread of chlamydial infection from the lower to the upper genital tract in C3H/HeN mice. Vaccine 21: 1089-1093.
  • Dugan J, Andersen AA, Rockey DD (2007) Functional characterization of IScs605, an insertion element by tetracycline-resistant Chlamydia suis. Microbiology 153: 71-79.
  • Dugan J, Rockey DD, Jones L, Andersen AA (2004) Tetracycline resistance in Chlamydia suis mediated by genomic island inserted into the chlamydial inv-like gene. Antimicrob Agents Chemoter 48: 3989-3995.
  • Everett KD, Bush RM, Andersen AA (1999) Emended description of the order Chlamydiales, proposal of Parachlamydiacae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiacae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49: 415-440.
  • Everson JS, Garner SA, Fane B, Liu BL, Lambden PR, Clarke IN (2002) Biological properties and cell tropism of Chp2, a bacteriophage of the obligate intracellular bacterium Chlamydophila abortus. J Bacteriol 184: 2748-2754.
  • Farencena A, Comanducci M, Donati M, Ratti G, Cevenini R (1997) Characterization of a new isolate of Chlamydia trachomatis which lacks the common plasmid and has properties of biovar trachoma. Infect Immun 65: 2965-2969.
  • Ferreira R, Borges V, Nunes A, Borrego MJ, Gomes JP (2013) Assessment of the load and transcriptional dynamics of Chlamydia trachomatis plasmid according to strains' tissue tropism. Microbiol Res 168: 333-339.
  • Frazer LC, Darville T, Chandra-Kuntal K, Andrews CW Jr, Zurenski M, Mintus M, AbdelRahman YM, Belland RJ, Ingalls RR, O'Connell CM (2012) Plasmid-cured Chlamydia caviae activates TLR2-dependent signaling and retains virulence in the Guinea pig model of genital tract infection. PLoS ONE 7: e30747.
  • Fredlund H, Falk L, Jurstrand M, Unemo M (2004) Molecular genetic methods for diagnosis and characterisation of Chlamydia trachomatis and Neisseria gonorrhoeae: impact on epidemiological surveillance and interventions. APMIS 112: 771-784.
  • Garner SA, Everson JS, Lambden PR, Fane BA, Clarke IN (2004) Isolation, molecular characterisation and genome sequence of bacteriophage (Chp3) from Chlamydophila pecorum. Virus genes 28: 207-214.
  • Gong S, Yang Z, Lei L, Shen L, Zhong G (2013) Characterization of Chlamydia trachomatis plasmid-encoded open reading frames. J Bacteriol 195: 3819-3826.
  • Harley R, Day S, Di Rocco C, Helps C (2010) The Chlamydophila felis plasmid is highly conserved. Vet Microbiol 146: 172-174.
  • Hatt C, Ward ME, Clarke IN (1988) Analysis of the entire nucleotide sequence of the cryptic plasmid of Chlamydia trachomatis serovar L1. Evidence for involvement in DNA replication. Nucleic Acids Res 16: 4053-4067.
  • Hoestgaard-Jensen K, Christiansen G, Honore B, Birkelund S (2011) Influence of the Chlamydia pneumoniae AR39 bacteriophage φCPAR39 on chlamydial inclusion morphology. Immunol Med Microbial 62: 148-156.
  • Horn W (2012) Phylum XXIV. Chlamydiae Garrity and Holt 2001. In Bergey's Manual of Systematic Bacteriology. 2nd edn, 4th vol. Krieg NR, Stanley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB, eds, pp 843-878. Springer, New York.
  • Hsia RC, Ohayon H, Gounon P, Dautry-Varsat A, Bavoil PM (2000) Phage infection of the obligate molecular bacterium, Chlamydia psittaci strain Guinea pig inclusion conjunctivitis. Microbes Infect 2: 761-772.
  • Hsia RC, Ting LM, Bavoil PM (2000) Microvirus of Chlamydia psittaci strain Guinea pig inclusion conjunctivitis: isolation and molecular characterization. Microbiology 146: 1651-1660.
  • Hugall A, Timms P, Girjes AA, Lavin MF (1989) Conserved DNA sequences in chlamydial plasmids. Plasmid 22: 91-98.
  • Kalman S, Mitchell W, Marathe R, Lammel C, Fan J, Hyman RW, Olinger L, Grimwood J, Davis RW, Stephens RS (1999) Comparative genomes of Chlamydia pneumonia and C. trachomatis. Nature Genet 21: 385-389.
  • Kari L, Whitmire WM, Olivares-Zavaleta N, Goheen MM, Taylor LD, Carlson JH, Sturdevant GL, Lu C, Bakios LE, Randall LB, Parnell MJ, Zhong G, Caldwell HD (2011) A live-attenuated chlamydial vaccine protects against trachoma in nonhuman primates. J Exp Med 11: 2217-2223.
  • Karunakaran KP, Blanchard JF, Raudonikiene A, Shen C, Murdin AD, Brunham RC (2002) Molecular detection and seroepidemiology of the Chlamydia pneumoniae bacteriophage (φCpn1). J Clin Microbiol 40: 4010-4014.
  • King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (2012) Virus Taxonomy: classification and nomenclature of viruses. Ninth report of the International Committee on Taxonomy of viruses. pp 385-393. Elsevier-Academic Press, London, UK.
  • Krupovic M, Forterre P (2011) Microviridae goes temperate: Microvirus-related proviruses reside in the genomes of Bacteroidetes. PLoS ONE 6: e19893. doi:10.1371/journal.pone.0019893.
  • Krupovic M, Prangishvili D, Hendrix RW, Bamford DH (2011) Genomics of bacterial and archeal viruses: dynamics within the prokaryotic virosphere. Microbial Mol Biol Rev 75: 610-635.
  • Last AR, Roberts CH, Cassama E, Nabicassa M, Molina-Gonzalez S, Burr SE, Mabey DC, Bailey RL, Holland MJ (2014) Plasmid copy number and disease severity in naturally occurring ocular Chlamydia trachomatis infection. J Clin Microbiol 52: 324-327.
  • Li Z, Chen D, Zhong Y, Wang S, Zhong G (2008) The chlamydial plasmid-encoded protein Pgp3 is secreted into the cytosol of Chlamydia-infected cells. Infect Immun 76: 3415-3428.
  • Liu BL, Everson JS, Fane B, Giannikopoulou P, Vretou E, Lambden PR, Clarke IN (2000) Molecular characterization of a bacteriophage (Chp2) from Chlamydia psittaci. J Virol 74: 3464-3469.
  • Liu Y, Chen C, Gong S, Hou S, Qi M, Liu Q, Baseman J, Zhong G (2014) Transformation of Chlamydia muridarum reveals a role for Pgp5 in suppression of plasmid-dependent gene expression. J Bacteriol 196: 989-998.
  • Lovett M, Kuo C-C, Holmes K, Falkow S (1980) Plasmids of the genius Chlamydia. In Current chemotherapy and infectious diseases. Proceedings of the 11th International Congress of Chemotherapy and the 19th Interscience Conference on Antimicrobial Agents and Chemotherapy. Nelson J, Grassi C, eds, pp 1250-1252. American Society for Microbiology, Washington, DC.
  • Lusher M, Storey CC, Richmond SJ (1989) Plasmid diversity within the genus Chlamydia. J Gen Microbiol 135: 1145-1151.
  • Lusher M, Storey CC, Richmond SJ (1991) Extrachromosomal elements of the genus Chlamydia. In Advances in Gene Technology, Greenway PJ, ed, pp 261-285. Elsevier Science, New York.
  • Miyairi I, Laxton JD, Wang X, Obert CA, Arva Tatireddigari VR, van Rooijen N, Hatch TP, Byrne GI (2011) Chlamydia psittaci genetic variants differ in virulence by modulation of host immunity. J Infect Dis 204: 654-663.
  • Nunes A, Borrego MJ, Gomes JP (2013) Genomic features beyond Chlamydia trachomatis phenotypes: what do we think we know? Infect Genet Evol 16: 392-400.
  • O'Connel CM, Ingalls RR, Andrews CW Jr, Scurlock AM, Darville T (2007) Plasmid-deficient Chlamydia muridarum fail to induce immune pathology and protect oviduct disease. J Immunol 179: 4027-4034.
  • Pawlikowska M, Deptuła W (2012) Chlamydia and chlamydophila in humans and animals. Publishing House of University of Szczecin, Szczecin (in Polish).
  • Pawlowski A, Rissanen I, Bamford JK, Krupovic M, Jalasvuori M (2014) Gammasphaerolipovirus, a newly proposed bacteriophages genus, unifies viruses of halophilic archaea and thermophilic bacteria within the novel family Sphaerolipoviridae. Arch Virol 159: 1541-1554.
  • Petersen J (2011) Phylogeny and compatibility: plasmid classification in the genomics sera. Arch Microbial 193: 313-321.
  • Pickett MA, Everson JS, Pead PJ, Clarke IN (2005) The plasmids of Chlamydia trachomatis and Chlamydophila pneumonia (N16): accurate determination of copy number and the paradoxical effect of plasmid agents. Microbiology 151: 893-903.
  • Ramsey KH, Schripsema JH, Smith BJ, Wang Y, Jham BC, O'Hagan KP, Thomson NR, Murthy AK, Skilton RJ, Chu P, Clarke IN (2014) Plasmid CDS5 influences infectivity and virulence in a mouse model of Chlamydia trachomatis urogenital infection. Infect Immun 82: 3341-3349.
  • Rank RG, Bowlin AK, Cané S, Shou H, Liu Z, Nagarajan UM, Bavoil PM (2009) Effect of chalmydiaphage φCPG1 on the course of conjunctival infection with 'Chlamydia caviae' in Guinea Pigs. Infect Immun 77: 1216-1221.
  • Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Utterback T, Berry K, Bass S, Linher K, Weidman J, Khouri H, Craven B, Bowman C, Dodson R, Gwinn M, Nelson W, DeBoy R, Kolonay J, McClarty G, Salzberg SL, Eisen J, Fraser CM (2000) Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumonia Ar39. Nucleic Acids Res 28: 1397-1406.
  • Read TD, Fraser CM, Hsia RC, Bavoil PM (2000) Comparative analysis of Chlamydia bacteriophages reveals variation localization to a putative receptor binding domain. Microb Comp Genomics 5: 223-232.
  • Read TD, Myers GS, Brunham RC, Nelson WC, Paulsen IT, Heidelberg J, Holtzapple E, Khouri H, Federova NB, Carty HA, Umayam LA, Haft DH, Peterson J, Beanan MJ, White O, Salzberg SL, Hsia RC, McClarty G, Rank RG, Bavoil PM, Fraser CM (2003) Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examing the role of niche-specific genes in the evolution of the Chlamydiaceae. Nucleic Acids Res 31: 2134-2147.
  • Ripa T, Nilsson PA (2006) A variant of Chlamydia trachomatis with deletion in cryptic plasmid: implication for use of PCR diagnostic tests. Euro Surveill 11: e061109.
  • Rockey DD (2011) Unraveling the basic biology and clinical significance of the chlamydial plasmid. J Exp Med 208: 2159-2162.
  • Rockey DD, Lenart J, Stephens RS (2000) Genome sequencing and our understanding of Chlamydiae. Infect Immun 68: 5473-5479.
  • Roux S., Krupovic M, Poulet A, Debroas D, Enault F (2012) Evolution and diversity of the Microviridae viral family through a collection of 81 new complete genomes assembled from virome reads. PLoS ONE 7: e40418. doi:10.1371/journal.pone.0040418.
  • Rupp J, Solbach W, Gieffers J (2007) Prevalence, genetic conservation and transmissibility of the Chlamydia pneumonia bacteriophage (φCpn1). FEMS Microbiol Letters 273: 45-49.
  • Russell M, Darville T, Chandra-Kuntal K, Smith B, Andrews CW Jr, O'Connel C (2011) Infectivity acts as in vivo selection for maintenance of the chlamydial cryptic plasmid. Infect Immun 79: 98-107.
  • Sait M, Livingstone M, Graham R, Inglis NF, Wheelhouse N, Longbottom D (2011) Identification, sequencing and molecular analysis of Chp4, a novel chlamydiaphage of Chlamydophila abortus belonging to the family Microviridae. J Gen Virol 92: 1733-1737.
  • Salim O, Skilton RJ, Lambden PR, Fane BA, Clarke IN (2008) Behind the chlamydial cloak: the replication cycle of chlamydiophage Chp2, revealed. Virology 377: 440-445.
  • Schachter J, Chow JM, Howard H, Bolan G, Moncada J (2006) Detection of Chlamydia trachomatis by nucleic acid amplification testing: our evaluation suggests that CDC-recommended approaches for confirmatory testing are Ill-advised. J Clin Microbiol 44: 2512-2517.
  • Seth-Smith HM, Harris SR, Persson K, Marsh P, Barron A, Bignell A, Bjartling C, Clark L, Cutcliffe LT, Lambden PR, Lennard N, Lockey S J, Quail MA, Salim O, Skilton RJ, Wang Y, Holland MJ, Parkhill J, Thomson NR, Clarke IN (2009) Co-evolution of genomes and plasmids within Chlamydia trachomatis and the emergence in Sweden of a new variant strain. BMC Genomics 10: 239. doi:10.1186/1471-2164-10-239.
  • Sigar IM, Schripsema JH, Wang Y, Clarke IN, Cutcliffe LT, Seth-Smith HM, Thomson NR, Bjartling C, Unemo M, Persson K, Ramsey KH (2014) Plasmid deficiency in urogenital isolates of Chlamydia trachomatis infectivity and virulence in a mouse model. Pathog Dis 70: 61-69.
  • Song L, Carlson JH, Whitmire WM, Kari L, Virtaneva K, Sturdevant DE, Watkins H, Zhou B, Sturdevant GL, Porcella SF, McClarty G, Caldwell HD (2013) Chlamydia trachomatis plasmid-encoded Pgp4 is a transcriptional regulator of virulence-associated genes. Infect Immun 81: 636-644.
  • Song L, Carlson JH, Zhou B, Virtaneva K, Whitmire WM, Sturdevant GL, Porcella SF, McClarty G, Caldwell HD (2014) Plasmid-mediated transformation tropism of chlamydial biovars. Pathogens and Disease 70: 189-193. doi: 10.1111/2049-632X.12104.
  • Sriprakash KS, Macavoy ES (1987) Characterization and sequence of a plasmid from the trachoma biovar of Chlamydia trachomatis. Plasmid 18: 205-214.
  • Storey CC, Lusher M, Richmond SJ, Bacon J (1989a) Further characterization of a bacteriophage recovered from an avian strain of Chlamydia psittaci. J Gen Virol 70: 1321-1327.
  • Storey CC, Lusher M, Richmond SJ (1989b) Analysis of the complete nucleotide sequence of Chp1, a phage which infects avian Chlamydia psittaci. J Gen Virol 70: 3381-3390.
  • Thomas NS, Lusher M, Storey CC, Clarke IN (1997) Plasmid diversity in Chlamydia. Microbiology 143: 1847-1854.
  • Wang Y, Kahane S, Cutcliffe LT, Skilton RJ, Lambden PR, Clarke IN (2011) Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by aqusition of a plasmid shuttle vector. PLoS Pathog 7: e10.1371/journal.ppat.1002258.
  • Young R (1992) Bacteriophage lysis: mechanism and regulation. Microbiol Rev 56: 430-481.
  • Zheng Y, Struck DK, Bernhardt TG, Young R (2008) Genetic analysis of MraY inhibition of the φX174 protein E. Genetics 180: 1459-1466.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.