Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 61 | 4 | 759-763

Article title

Hypothetical glycerol pathways of newly isolated strains capable of 1,3-propanediol production

Content

Title variants

Languages of publication

EN

Abstracts

EN
Study presented here demonstrates the ability of three newly isolated strains, obtained from environmental probes (manure, bottom sediment, and food waste) and identified as Clostridium bifermentans, Clostridium butyricum, and Hafnia alvei, to synthesize 1,3-propanediol (1,3-PD), organic acids (such as lactic, acetic, fumaric, succinic, and butyric acids), and ethanol from glycerol. The production of 1,3-PD as well as the glycerol pathways in C. bifermentans and H. alvei cells have not been investigated and described yet by others. Moreover, there is no data in the available literature on the products of glycerol utilization by H. alvei and there is only some incoherent data (mainly from the first half of the twentieth century) about the ability of C. bifermentans to carry out glycerol degradation. Additionally, this study presents complete hypothetical glycerol pathways and the basic fermentation kinetic parameters (such as yield and productivity) for both strains as well as for the newly isolated C. butyricum strain.

Year

Volume

61

Issue

4

Pages

759-763

Physical description

Dates

published
2014
received
2014-03-06
revised
2014-05-28
accepted
2014-11-30
(unknown)
2014-12-04

Contributors

  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznań, Poland
author
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznań, Poland
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznań, Poland
author
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznań, Poland
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznań, Poland
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznań, Poland
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznań, Poland

References

  • Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (1984) Bergey's Manual of Determinative Bacteriology, pp 436-455. The Williams & Wilkins Co, Baltimore.
  • Biebl H, Marten S, Hippe H, Deckwer WD (1992) Glycerol conversion to 1,3-propanediol by newly isolated clostridia. Appl Microbiol Biotechnol 36: 592-597.
  • Biebl H, Spröer C (2002) Taxonomy of the glycerol fermenting Clostridia and description of Clostridium diolis sp. nov. Syst Appl Microbiol 25: 491-497.
  • Biebl H, Zeng AP, Menzel K, Deckwer WD (1998) Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumonia. Appl Microbiol Biotechnol 50: 24-29.
  • Brenner DJ, Krieg NR, Staley JR (2005) Bergey's Manual of Systematic Bacteriology: The Proteobacteria: Part B The Gammaproteobacteria. 2nd edn, pp 587-850.
  • Brooks E, Epps HBG (1958) Taxonomic studies of the genus Clostridium: Clostridium bifermentans and Clostridium sordelli. J Gen Microbiol 21: 144-155.
  • Dabrock B, Bahl H, Gottschalk G (1992) Parameters affecting solvent production by Clostridium pasteurianum. Appl Environ Microbiol 58: 1233-1239.
  • Dezfulian M, Quintana A, Solleymani B, Morafka D (1994) Physiological characteristics of Clostridium bifermentans selectively isolated from California desert tortoise. Folia Microbiol 39: 496-500.
  • Elsden SR, Hilton MG (1978) Volatile acid production from threonine, valine, leucine and isoleucine by Clostridia. Arch Microbiol 117: 165-172.
  • Elsden SR, Hilton MG, Waller JM (1976) The end products of the metabolism of aromatic amino acids by Clostridia. Arch Microbiol 107: 283-288.
  • Gelder AH, Aydin R, Alves MM, Stams AJM (2012) 1,3-propanediol production from glycerol by a newly isolated Trichococcus strain. Microb Biotechnol 5: 573-578.
  • Hao J, Lin R, Zheng Z, Liu H, Liu D (2008) Isolation and characterization of microorganisms able to produce 1,3-propanediol under aerobic conditions. World J Microbiol Biotechnol 24: 1731-1740.
  • Himmi EL, Bories A, Barbirato F (1999) Nutrient requirements for glycerol conversion to 1,3-propanediol by Clostridium butyricum. Bioresour Technol 67: 123-128.
  • Hiremath A, Kannabiran M, Rangaswamy V (2011) 1,3-Propanediol production from crude glycerol from jatropha biodiesel process. N Biotechnol 28: 19-23.
  • Homann T, Tag C, Biebl H, Deckwer WD, Schink B (1990) Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Bio 33: 121-126.
  • Hong E, Yoon S, Kim J, Kim E, Kim D, Rhie S, Ryu YW (2013) Isolation of microorganisms able to produce 1,3-propanediol and optimization of medium constituents for Klebsiella pneumoniae AJ4. Bioprocess Biosyst Eng 36: 835-843.
  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50(4): 484-524.
  • Jungermann K, Thauer RK, Leimenstoll G, Decker K (1973) Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic clostridia. Biochimica et Biophysica Acta 305: 268-280.
  • Kaeberlein T, Lewis K, Epstein SS (2002) Isolating 'uncultivable' microorganisms in pure culture in a simulated natural environment. Science 296: 1127-1129.
  • Khanal SM, Chen WH, Sung S (2004) Biological hydrogen production: effects of pH and intermediate products. Int J HN Energy 29: 1123-1131.
  • Kubiak P, Leja K, Myszka K, Celińska E, Spychała M, Szymanowska-Powałowska D, Czaczyk K, Grajek W (2012) Physiological predisposition of various Clostridium species to synthetize 1,3-propanediol from glycerol. Process Biochem 47: 1308-1319.
  • Leja K, Myszka K, Kubiak P, Wojciechowska J, Olejnik-Schmidt AK, Czaczyk K, Grajek W (2011) Isolation and identification of Clostridium spp. from natural samples that performs effective conversion of glycerol to 1,3-propanediol. Acta Sci Pol Biotechnologia 10: 25-34.
  • Levin BD, Islam R, Cicek N, Sparling R (2006) Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int J HN Energy 31: 1496-1503.
  • McBee ME, Schauer DB (2006) The Genus Hafnia. Prokaryotes 6: 215-218.
  • Mccoy E, Mcclung S (1936) Studies on anaerobic bacteria. Antigenic relations of Clostridium bifermentans and Clostridium centrosporogenes. J Bacteriol 31: 557.
  • Mead GC (1971) The amino acid-fermenting Clostridia. J Gen Microbiol 67: 47-56.
  • Myszka K, Leja K, Olejnik-Schmidt AK, Czaczyk K (2012) Isolation process of industrially useful Clostridium bifermentans from natural samples. J Biosc Bioeng 113: 631-633.
  • Nachman S, Kaul A, Li KI, Slim MS, Filippo JA, Horn KV (1989) Liver abscess caused by Clostridium bifermentans following blunt abdominal trauma. J Clin Microbiol 27: 1137-1138.
  • Nicol RW, Marchand K, Lubitz WD (2012) Bioconversion of crude glycerol by fungi. Appl Microbiol Biotechnol 93: 1865-1875.
  • Orczyk D, Szymanowska-Powałowska D (2012) Isolation of bacteria of the genus Clostridium able to conversion of glycerol to 1,3-propanediol and optimization of medium. Engine Science and Technol 2: 44-59 (in Polish).
  • Papanikolaou S, Ruiz-Sanchez P, Pariset B, Blanchard F, Fick M (2000) High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol 77: 191-208.
  • Petitdemange E, Dűrr C, Andaloussi SA, Raval G (1995) Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum. J Ind Microbiol 15: 498-502.
  • Ringel AK, Wilkens E, Hortig D, Willke T, Vorlop KD (2012) An improved screening method for microorganisms able to convert crude glycerol to 1,3-propanediol and to tolerate high product concentrations. Appl Microbiol Biotechnol 93: 1049-1056.
  • Rodriguez LA, Gallardo CS, Acosta F, Nieto TP, Acosta B, Real F (1998) Complete genome analysis of the mandarin fish infectious spleen and kidney necrosis iridovirus. J Fish Disease 21: 365-369.
  • Rossi DM, Da Costa JB, De Souza EA, Peralba MCR, Ayub MAZ (2012) Bioconversion of residual glycerol from biodiesel synthesis into 1,3-propanediol and ethanol by isolated bacteria from environmental consortia. Renew Energ 39: 223-227.
  • Samul D, Worsztynowicz P, Leja K, Grajek W (2013) Beneficial and harmful roles of bacteria from the Clostridium genus. Acta Biochm Pol 60: 515-521.
  • Sattayasamitsathit S, Prasertsan P, Methacanon P (2011) Statistical optimization for simultaneous production of 1,3-propanediol and 2,3-butanediol using crude glycerol by newly bacterial isolate. Process Biochem 46: 608-614.
  • Turton LJ, Drucker DB, Ganguli LA (1982) Effect of glucose concentration in the growth medium upon neutral and acidic fermentation end-products of Clostridium bifermentans, Clostridium sporogenes and Peptostreptococcus anaerobius. J Med Microbiol 16: 61-67.
  • Wang CC, Chang CW, Chu CP, Lee DJ, Chang BV, Liao CS (2003) Producing hydrogen from wastewater sludge by Clostridium bifermentans. J Biotechnol 102: 83-92.
  • Wilkens E, Ringel AK, Hortig D, Willke T, Vorlop KD (2012) High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Appl Microbiol Biotechnol 93: 1057-1063.
  • Wu Z, Yang ST (2003) Extractive fermentation for butyric acid production from glucose by Clostridium tyrobutyricum. Biotechnol Bioeng 82: 93-102.
  • Zeng AP, Biebl H (2002) Bulk chemicals from Biotechnology: the case of microbial production of 1,3-propanediol and the new trends (in) Tools and applications of biochemical engineering science, red. Schügerl and A.P. Zeng, Adv Biochem Eng Biotechnol 74: 239-259.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv61p759kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.