PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 61 | 3 | 603-607
Article title

Lactococcus lactis IBB477 presenting adhesive and muco-adhesive properties as a candidate carrier strain for oral vaccination against influenza virus

Content
Title variants
Languages of publication
EN
Abstracts
EN
In the gastrointestinal tract (GIT), adhesion is a prerequisite for bacterial colonization. Lactococci can be used in functional food (probiotics) and health-related applications (mucosal vaccines, therapeutic drug delivery), both potentially involving adhesive properties. A candidate lactic acid bacterium for influenza antigen delivery through the GIT should display the ability to adhere. The present work probes the interactions between Lactococcus lactis and mucins using pig gastric mucin (PGM) as a model. Two strains were used for the optimization of the screening method for adhesion: L. lactis subsp. cremoris IBB477 persistent in the GIT of germ-free rats, and the low-adhering control strain MG1820. High adhesion to bare and mucin-coated polystyrene of IBB477 in comparison with MG1820 was observed. We searched for genetic determinants potentially involved in the adhesion/muco-adhesion of IBB477, identifying two such genes: prtP and a gene coding for a protein with MUB and MucBP domains. Based on its persistence in the GIT and adhesive properties, L. lactis IBB477 is a candidate carrier strain for expression of influenza haemagglutinin (HA) protein for induction of mucosal immune response.
Publisher

Year
Volume
61
Issue
3
Pages
603-607
Physical description
Dates
published
2014
received
2014-06-02
revised
2014-07-19
accepted
2014-08-18
(unknown)
2014-09-11
Contributors
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
  • Université de Toulouse, INSA, UPS, INPT, LISBP, Toulouse, France
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
References
  • Boekhorst J, de Been MW, Kleerebezem M, Siezen RJ (2005) Genome-wide detection and analysis of cell wall-bound proteins with LPxTG-like sorting motifs. J Bacteriol 187: 4928-4934.
  • Boekhorst J, Helmer Q, Kleerebezem M, Siezen RJ (2006) Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. Microbiology 152: 273-280.
  • Boguslawska J, Zycka-Krzesinska J, Wilcks A, Bardowski J (2009) Intra- and interspecies conjugal transfer of Tn916-like elements from Lactococcus lactis in vitro and in vivo. Appl Environ Microbiol 75: 6352-6360.
  • Christensen GD, Baldassarri L, Simpson WA (1995) Methods for studying microbial colonization of plastics. In: Methods Enzymol, vol. 253 Ron J, Doyle IO, eds, pp 477-500. Academic Press, New York, United States.
  • Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22: 996-1006.
  • Dague E, Le DT, Zanna S, Marcus P, Loubière P, Mercier-Bonin M (2010) Probing in vitro interactions between Lactococcus lactis and mucins using AFM. Langmuir 26: 11010-11017.
  • Giaouris E, Chapot-Chartier MP, Briandet R (2009) Surface physicochemical analysis of natural Lactococcus lactis strains reveals the existence of hydrophobic and low charged strains with altered adhesive properties. Int J Food Microbiol 131: 2-9.
  • Godon JJ, Jury K, Shearman CA, Gasson MJ (1994) The Lactococcus lactis sex-factor aggregation gene cluA. Mol Microbiol 12: 655-663.
  • Habimana O, Le Goff C, Juillard V, Bellon-Fontaine MN, Buist G, Kulakauskas S, Briandet R (2007) Positive role of cell wall anchored proteinase PrtP in adhesion of lactococci. BMC Microbiol 7: 36.
  • Holmgren J, Czerkinsky C (2005) Mucosal immunity and vaccines. Nat Med 11: S45-S53.
  • Le DT, Guérardel Y, Loubière P, Mercier-Bonin M, Dague E (2011) Measuring kinetic dissociation/association constants between Lactococcus lactis bacteria and mucins using living cell probes. Biophys J 101: 2843-2853.
  • Litou Z, Bagos P, Tsirigos K, Liakopoulos TD, Hamodrakas SJ (2008) Prediction of cell wall sorting signals in gram-positive bacteria with a hidden markov model: application to complete genomes. J Bioinform Comput Biol 6: 387-401.
  • Liu M, Bayjanov J, Renckens B, Nauta A, Siezen RJ (2010) The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics 11: 36.
  • Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O'Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci 103: 15611-15616.
  • Meyrand M, Guillot A, Goin M, Furlan S, Armalyte J, Kulakauskas S, Cortes-Perez NG, Thomas G, Chat S, Péchoux C, Dupres V, Hols P, Dufrêne YF, Trugnan G, Chapot-Chartier MP (2013) Surface proteome analysis of a natural isolate of Lactococcus lactis reveals the presence of pili able to bind human intestinal epithelial cells. Mol Cell Proteomics 12: 3935-3947.
  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: 785-786.
  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40: D290-D301.
  • Reid JR, Coolbear T (1999) Specificity of Lactococcus lactis subsp. cremoris SK11 proteinase, lactocepin III, in low-water-activity, high-salt-concentration humectant systems and its stability compared with that of lactocepin I. Appl Environ Microbiol 65: 2947-2953.
  • Rochat T, Gratadoux JJ, Corthier G, Coqueran B, Nader-Macias ME, Gruss A, Langella P (2005) Lactococcus lactis SpOx spontaneous mutants: a family of oxidative-stress-resistant dairy strains. Appl Environ Microbiol 71: 2782-2788.
  • Roos S, Jonsson H (2002) A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology 148: 433-442.
  • Siezen RJ, Renckens B, van Swam I, Peters S, van Kranenburg R, Kleerebezem M, de Vos WM (2005) Complete sequences of four plasmids of Lactococcus lactis subsp. cremoris SK11 reveal extensive adaptation to the dairy environment. Appl Environ Microbiol 71: 8371-8382.
  • Stentz R, Gasson M, Shearman C (2006) The Tra domain of the lactococcal CluA surface protein is a unique domain that contributes to sex factor DNA transfer. J Bacteriol 188: 2106-2114.
  • Szatraj K, Szczepankowska A, Sączyńska V, Florys K, Gromadzka B, Łepek K, Płucienniczak G, Szewczyk B, Zagórski-Ostoja W, Bardowski J (2014) Expression of avian influenza haemagglutinin (H5) and chicken interleukin 2 (chIL-2) under control of the ptcB promoter in Lactococcus lactis. Acta Biochim Pol 61: 609-614.
  • Van Tassell ML, Miller MJ (2011) Lactobacillus adhesion to mucus. Nutrients 3: 613-636.
  • Wegmann U, O'Connell-Motherway M, Zomer A, Buist G, Shearman C, Canchaya C, Ventura M, Goesmann A, Gasson MJ, Kuipers OP, van Sinderen D, Kok J (2007) Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189: 3256-3270.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv61p603kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.