Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 61 | 3 | 531-539

Article title

Virus-like particles as vaccine

Content

Title variants

Languages of publication

EN

Abstracts

EN
This review presents data on commercial and experimental virus-like particle (VLP) vaccines, including description of VLP vaccines against influenza. Virus-like particles are multimeric, sometimes multiprotein nanostructures assembled from viral structural proteins and are devoid of any genetic material. VLPs present repetitive high-density displays of viral surface proteins. Importantly, they contain functional viral proteins responsible for cell penetration by the virus, ensuring efficient cell entry and thus tissue-specific targeting, determined by the origin of the virus. The foremost application of VLPs is in vaccinology, where they provide delivery systems that combine good safety profiles with strong immunogenicity and constitute a safe alternative to inactivated infectious viruses. These stable and versatile nanoparticles display excellent adjuvant properties capable of inducing innate and cognate immune responses. They present both, high-density B-cell epitopes, for antibody production and intracellular T- cell epitopes, thus inducing, respectively, potent humoral and cellular immune responses. Uptake of VLPs by antigen-presenting cells leads to efficient immune responses resulting in control of pathogenic microorganisms.

Year

Volume

61

Issue

3

Pages

531-539

Physical description

Dates

published
2014
received
2014-07-17
revised
2014-08-20
accepted
2014-09-04
(unknown)
2014-09-18

Contributors

  • Therex, TIMC-IMAG, CNRS UMR 5525, UJF, La Tronche, France
author
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
author
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland

References

  • Beyer I, van Rensburg R, Strauss R, Li Z, Wang H, Persson J, Yumul R, Feng Q, Song H, Bartek J (2011) Epithelial junction opener JO-1 improves monoclonal antibody therapy of cancer. Cancer Res 71: 7080-7090.
  • Beyer I, Cao H, Persson J, et al. (2012) Coadministration of epithelial junction opener JO-1 improves the efficacy and safety of chemotherapeutic drugs Clin Canser Res 18: 3340-3351.
  • Beyer T, Herrmann M, Reiser C, Bertling W, Hess J (2001) Bacterial carriers and virus- likeparticles as antigen delivery devices: role of dendritic cells in antigen presentation. Curr Drug Targets Infect Disord 1: 287-302.
  • Bright RA, Carter DM, Crevar CJ, Toapanta FR, Steckbeck JD, Cole KS et al. (2008) Cross-clade protective immune responses to influenza viruses with H5N1 HA and NA elicited by an influenza virus-like particle. PLoS ONE 3: e1501.
  • Cao C, Dong X, Wu X, Wen B, Ji G, Cheng L, Liu H (2012) Conserved fiber-penton base interaction revealed by nearly atomic resolution cryo-electron microscopy of the structure of adenovirus provides insight into receptor interaction. J Virol 86: 12322-12329.
  • Chen X, Qiu Z, Yang S, Ding D, Chen F, Zhou Y, Wang M, Lin J, Yu X, Zhou Z, Liao Y (2013) Effectiveness and safety of a therapeutic vaccine against angiotensin II receptor type 1 in hypertensive animals. Hypertension 61: 408-416.
  • Fender P, Ruigrok RW, Gout E, Buffet S, Chroboczek J (1997) Adenovirus dodecahedron, a new vector for human gene transfer. Nat Biotechnol 15: 52-56.
  • Fender P, Schoehn G, Foucaud-Gamen J, Gout E, Garcel A, Drouet E, Chroboczek J (2003) Adenovirus dodecahedron allows large multimeric protein transduction in human cells. J Virol 77: 4960-4964.
  • Fender P, Boussaid A, Mezin P, Chroboczek J (2005) Synthesis, cellular localization, and quantification of penton-dodecahedron in serotype 3 adenovirus-infected cells. Virology 340: 167-173.
  • Fender P, Hall K, Schoehn G, Blair GE (2012) Impact of human adenovirus type 3 dodecahedron on host cells and its potential role in viral infection. J Virol 86: 5380-5385.
  • Fuschiotti P, Schoehn G, Fender P, Fabry CM, Hewat EA, Chroboczek J, Ruigrok RW, Conway JF (2006) Structure of the dodecahedral penton particle from human adenovirus type 3. J Mol Biol 356: 510-520.
  • Garcel A, Gout E, Timmins J, Chroboczek J, Fender P (2006) Protein transduction into human cells by adenovirus dodecahedron using WW domains as universal adaptors. J Gene Med 8: 524-531.
  • Garigliany MM, Habyarimana A, Lambrecht B, Van de Paar E, Cornet A, vanden Berg T, et al. (2010) Influenza A strain-dependent pathogenesis in fatal H1N1 andH5N1 subtype infections of mice. Emerg Infect Dis 16: 595-603.
  • Gianfrani C, Oseroff C, Sidney J, Chesnut RW, Sette A (2000) Human memory CTL response specific for influenza A virus is broad and multispecific. Hum Immunol 61: 438-452.
  • Goldinger SM, Imhof L, Willers J, French LE, Dummer R (2010) P30 Phase II clinical trial using Virus-Like Particle (VLP) vaccine including a melan-A analogon and imiquimod. Melanoma Research 20: e56 (MELANOMA III: Medical Therapy).
  • Gotch F, McMichael A, Smith G, Moss B (1987) Identification of viral molecules recognized by influenza-specific human cytotoxic T lymphocytes. J Exp Med 165: 408-416.
  • Greiner VJ, Egelé C, Oncul S, Ronzon F, Manin C, Klymchenko A, Mély Y (2010) Characterization of the lipid and protein organization in HBsAg viral particles by steady-state and time-resolved fluorescence spectroscopy. Biochimie 92: 994-1002.
  • Greiner VJ, Ronzon F, Larquet E, Desbat B, Estèves C, Bonvin J, Gréco F, Manin C, Klymchenko AS, Mély Y (2012) The structure of HBsAg particles is not modified upon their adsorption on aluminium hydroxide gel. Vaccine 30: 5240-5245.
  • Greiner VJ, Manin C, Larquet E, Ikhelef N, Gréco F, Naville S, Milhiet PE, Ronzon F, Klymchenko A, Mély Y (2014) Characterization of the structural modifications accompanying the loss of HBsAg particle immunogenicity. Vaccine 32: 1049-1054.
  • Guu TS, Liu Z, Ye Q, Mata DA, Li K, Yin C, Zhang J, Tao YJ (2009) Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding. Proc Natl Acad Sci U S A 106: 12992-12997.
  • Ito T, Gorman OT, Kawaoka Y, Bean WJ, Webster RG (1991) Evolutionary analysis of the influenza A virus M gene with comparison of the M1 and M2 proteins. J Virol 65: 5491-5498.
  • Kawano M, Morikawa K, Suda T, Ohno N, Matsushita S, Akatsuka T, Handa H, Matsui M (2014) Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants. Virology 448: 159-167.
  • Knossow M, Skehel J (2006) Variation and infectivity neutralization in influenza. J Immunol 119: 1-7.
  • Landry N, Ward BJ, Trépanier S, Montomoli E, Dargis M, Lapini G, Vézina LP (2010) Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS One 5(12): e15559.
  • Lee LY, Ha L A, Simmons C, de Jong M D, Chau NV, Schumacher R, Peng YC, McMichael AJ, Farrar JJ, et al (2008) Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals. J Clin Invest 118: 3478-3490.
  • Lindenburg CE, Stolte I, Langendam MW, Miedema F, Williams IG, Colebunders R, Weber JN, Fisher M, Coutinho RA (2002) Long-term follow-up: no effect of therapeutic vaccination with HIV-1 p17/p24:Ty virus-like particles on HIV-1 disease progression. Vaccine 20: 2343-2347.
  • Lopez-Macias C, Ferat-Osorio E, Tenorio-Calvo A, Isibasi A, Talavera J, Arteaga-Ruiz O et al. (2011) Safety and immunogenicity of a virus-like particle pandemic influenza A (H1N1) 2009 vaccine in a blinded: randomized, placebo-controlled trial of adults in Mexico. Vaccine 29: 7826-7834.
  • Lu ZZ, Wang H, Zhang Y, Cao H, Li Z, Fender P, Lieber A (2013) Penton-dodecahedral particles trigger opening of intercellular junctions and facilitate viral spread during adenovirus serotype 3 infection of epithelial cells. PLoS Pathog 9: e1003718.
  • Mikaeloff Y, Caridade G, Suissa S, Tardieu M (2009) Hepatitis B vaccine and the risk of CNS inflammatory demyelination in childhood. Neurology 72: 873-880.
  • Naskalska A, Szolajska E, Chaperot L, Angel J, Plumas J, Chroboczek J (2009) Influenza recombinant vaccine: Matrix protein M1 on the platform of the adenovirus dodecahedron. Vaccine 27: 7385-7393.
  • Naskalska A, Szolajska E, Andreev I, Podsiadla M, Chroboczek J (2013) Towards a novel influenza vaccine: engineering of hemagglutinin on a platform of adenovirus dodecahedron. BMC Biotechnol 13: 50.
  • Nilsson J, Miyazaki N, Xing L, Wu B, Hammar L, Li TC, Takeda N, Miyamura T, Cheng RH (2005) Structure and assembly of a T=1 virus-like particle in BK polyomavirus. J Virol 79: 5337-5345.
  • Perrone LA, Ahmad A, Veguilla V, Lu X, Smith G, Katz JM, Pushko P, Tumpey TM (2009) Intranasal vaccination with 1918 influenza virus-like particles protects mice and ferrets from lethal 1918 and H5N1 influenza virus challenge. J Virol 83: 5726-5734.
  • Plotnicky H, Cyblat-Chanal D, Aubry JP, Derouet F, Klinguer-Hamour C, Beck A, et al. (2003) The immunodominant influenza matrix T cell epitope recognized inhuman induces influenza protection in HLA-A2/K(b) transgenic mice. Virology 309: 320-329.
  • Pushko P, Tumpey TM, Bu F, Knell J, Robinson R, Smith G (2005) Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induced protective immune responses in BALB/c mice. Vaccine 23: 5751-5759.
  • Simon C, Klose T, Herbst S, Han BG, Sinz A, Glaeser RM, Stubbs MT, Lilie H (2014) Disulfide linkage and structure of highly stable yeast-derived virus-like particles of murine polyomavirus. J Biol Chem 289: 10411-10408.
  • Smith GE, Flyer DC, Raghunandan R, Liu Y, Wei Z, Wu Y, Kpamegan E, Courbron D, Fries LF 3rd, Glenn GM (2013) Development of influenza H7N9 virus like particle (VLP) vaccine: homologous A/Anhui/1/2013 (H7N9) protection and heterologous A/chicken/Jalisco/CPA1/2012 (H7N3) cross-protection in vaccinated mice challenged with H7N9 virus. Vaccine 31: 4305-4313.
  • Szolajska E, Burmeister WP, Zochowska M, Nerlo B, Andreev I, Schoehn G, Andrieu JP, Fender P, Naskalska A, Zubieta C, Cusack S, Chroboczek J (2012) The structural basis for the integrity of adenovirus Ad 3 dodecahedron. PLoS One. 7: e46075.
  • Szurgot I, Szolajska E, Laurin D, Lambrecht B, Chaperot L, Schoehn G, Chroboczek J (2013) Self-adjuvanting influenza candidate vaccine presenting epitopes for cell-mediated immunity on a proteinaceous multivalent nanoplatform. Vaccine 31: 4338-4346.
  • Thuenemann EC, Meyers AE, Verwey J, Rybicki EP, Lomonossoff GP (2013) A method for rapid production of heteromultimeric protein complexes in plants: assembly of protective bluetongue virus-like particles. Plant Biotechnol J 11: 839-846.
  • Villegas-Mendez A, Garin MI, Pineda-Molina E, Veratti E, Bueren JA, Fender P, Lenormand JL (2010) In vivo delivery of antigens by adenovirus dodecahedron induces cellular and humoral immune responses to elicit antitumor immunity. Mol Ther 18: 1046-1053.
  • Wang H, Li ZY, Liu Y, Persson J, Beyer I, Möller T, Koyuncu D, Drescher MR, Strauss R, Zhang XB, Wahl JK 3rd, Urban N, Drescher C, Hemminki A, Fender P, Lieber A (2011a) Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14. Nat Med 17: 96-104.
  • Wang H, Li Z, Yumul R, Lara S, Hemminki A, Fender P, Lieber A (2011b) Multimerization of adenovirus serotype 3 fiber knob domains is required for efficient binding of virus to desmoglein 2 and subsequent opening of epithelial junctions. J Virol 85: 6390-6402.
  • Wang JW, Roden RB (2013) Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert Rev Vaccines 12: 129-141.
  • Wang H, Yumul R, Cao H, Ran L, Fan X, Richter M, Epstein F, Gralow J, Zubieta C, Fender P, Lieber A (2013) Structural and functional studies on the interaction of adenovirus fiber knobs and desmoglein 2. J Virol 87: 11346-11362.
  • Webster RG, Hinshaw VS (1977) Matrix protein from influenza A virus and its role in cross-protection in mice. Infect Immun 17: 561-566.
  • Zeltins A (2013) Construction and characterization of virus-like particles: a review. Mol Biotechnol 53: 92-107.
  • Zinkernagel RM (2014) On the role of dendritic cells versus other cells in inducing protective CD8+ T cell responses. Front Immunol 5: 30 (eCollection 2014).
  • Zochowska M, Paca A, Schoehn G, Andrieu JP, Chroboczek J, Dublet B, Szolajska E (2009) Adenovirus dodecahedron, as a drug delivery vector. PLoS One 4: e5569.
  • Zochowska M, Piguet AC, Jemielity J, Kowalska J, Szolajska E, Dufour JF, Chroboczek J (2014) Virus-like particle-mediated intracellular delivery of mRNA cap analog with in vivo activity against hepatocellular carcinoma. Nanomedicine pii: S1549-9634(14)00419-5.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv61p531kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.