PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 61 | 2 | 253-258
Article title

Computational model of abiogenic amino acid condensation to obtain a polar amino acid profile

Content
Title variants
Languages of publication
EN
Abstracts
EN
In accordance with the second law of thermodynamics, the Universe as a whole tends to higher entropy. However, the sequence of far-from-equilibrium events that led to the emergence of life on Earth could have imposed order and complexity during the course of chemical reactions in the so-called primordial soup of life. Hence, we may expect to find characteristic profiles or biases in the prebiotic product mixtures, as for instance among the first amino acids. Seeking to shed light on this hypothesis, we have designed a high performance computer program that simulates the spontaneous formation of the amino acid monomers in closed environments. The program was designed in reference to a prebiotic scenario proposed by Sydney W. Fox. The amino acid abundances and their polarities as the two principal biases were also taken into consideration. We regarded the computational model as exhaustive since 200 000 amino acid dimers were formed by simulation, subsequently expressed in a vector and compared with the corresponding amino acid dimers that were experimentally obtained by Fox. We found a very high similarity between the experimental results and our simulations.
Publisher

Year
Volume
61
Issue
2
Pages
253-258
Physical description
Dates
published
2014
received
2013-05-15
revised
2014-02-19
accepted
2014-03-06
(unknown)
2014-05-07
Contributors
  • Facultad de Ciencias de la Salud, Universidad Anáhuac, Col. Lomas Anáhuac C.P. 52786 Huixquilucan Estado de México, México
author
  • Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, C.P. 62209 Cuernavaca, Morelos, México
  • Facultad de Ciencias de la Salud, Universidad Anáhuac, Col. Lomas Anáhuac C.P. 52786 Huixquilucan Estado de México, México
  • Facultad de Ciencias de la Salud, Universidad Anáhuac, Col. Lomas Anáhuac C.P. 52786 Huixquilucan Estado de México, México
  • Departamento de Cómputo Reconfigurable y de Alto Rendimiento, Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro # 1, C.P: 72840 Tonantzintla, Puebla, México
References
  • Arnold VI (1974) Critical point of smooth functions. Vancouver Intern. Congr of Math 1: 19-39.
  • Banik SD, Nandi N (2013) Chirality and protein biosynthesis. Top Curr Chem 333: 255-306.
  • Bujdák J, Remko M, Rode BM (2006) Selective adsorption and reactivity of dipeptide stereoisomers in clay mineral suspension. J Colloid Interface Sci 294: 304-308.
  • Flügel RM (2011) Chirality and Life, Springer-Verlag Berlin Heidelberg (ISBN 978-3-642-16976-2).
  • Fox SW (1960) How did life begin. Science 132: 200-208.
  • Fox SW, Harada K (1960) The thermal copolymerization of amino acids common to protein. J Am Chem Soc 82: 3745-3751.
  • Fox SW, Harada K (1958) Thermal copolymerization of amino acids to a product resembling protein. Science 128: 1214.
  • Fox SW, Yuyama S (1963) Effects of the gram stain on microspheres from thermal polyamino acid. J Bacteriol 85: 279-283.
  • Herrera AL (1942) A new Theory of the origin and nature of Life. Science 96: 14.
  • Jakschitz TA, Rode BM (2012) Chemical evolution from simple inorganic compounds to chiral peptides. Chem Soc Rev 41: 5484-5489.
  • Jordan IK, Kondrashov FA, Adzhubei IA, Wolf YI, Koonin EV, Kondrashov AS, Sunyaev S (2005) A universal trend of amino acid gain and loss in protein evolution. Nature 433: 633-638.
  • Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28: 27-30.
  • Kenyon DH, Steinman G (1969) Biochemical Predestination, p243, McGraw-Hill, USA. Message Passing Interface chamalleon (MPICH) (
  • Meierhenrich U (2008) Amino Acids and the Asymmetry of Life, Springer-Verlag Berlin Heidelberg (ISBN 978-3-540-76885-2).
  • Mosqueira FG, Negron A, Ramos S, Polanco C (2012) Biased versus unbiased randomness in homo-polymers and copolymers of amino acids in the prebiotic world. Acta Biochim Pol 59: 543-547.
  • Munegumi T, Shimoyama A (2003) Development of Homochiral Peptides in the Chemical Evolutionary Process: Separation of Homochiral and Heterochiral Oligopeptides. Chirality 15: S108-S115.
  • Muñoz Caro GM, Meierhenrich UJ, Schutte WA, Barbier B, Arcones Segovia A, Rosenbauer A, Thiemann WH, Brack A, Greenberg JM (2002) Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416: 403-406.
  • Nelsestuen GL (1980) Origin of life: consideration of alternatives to proteins and nucleic acids. J Mol Evol 15: 59-72.
  • Oparin AI (1961) The origin of life. Nord Med 65: 693-697.
  • Oparin AI, Gladilin KL (1980) Evolution of self-assembly of probionts. Biosystems 12: 133-145.
  • Polanco C, Buhse T, Samaniego JL, Castañón-González JA (2013) Detection of selective antibacterial peptides by the Polarity Profile method. Acta Biochim Pol 60: 183-189.
  • Polanco C, Buhse T, Samaniego JL, Castañón González JA (2013a) A toy model of prebiotic peptide evolution: the possible role of relative amino acid abundances. Acta Biochim Pol 60: 175-182.
  • Polanco C, Samaniego JL (2009) Detection of selective cationic amphipathic antibacterial peptides by Hidden Markov models. Acta Biochim Pol 56: 167-176.
  • Polanco C, Samaniego JL, Buhse T, Mosqueira FG, Negrón-Mendoza A, Ramos-Bernal S, Castañón-González JA (2012) Characterization of selective antibacterial peptides by polarity index. Int J Pept 585027.
  • Rabiner LR (1989) A tutorial on hidden markov models and selected applications in speech recognition. Proc IEEE 77.
  • Rauchfuss H (2008) Chemical Evolution and the Origin of Life, Springer-Verlag Berlin Heidelberg, (ISBN: 978-3-540-78822-5) p. 139.
  • Rode BM, Schwendinger MG (1990) Copper-catalyzed amino acid condensation in water- a simple possible way of prebiotic peptide formation. Orig Life Evol Biosph 20: 401-410.
  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117: 528-529.
  • Sandars PG (2003) A toy model for the generation of homochirality during polymerization. Orig Life Evol Biosph 33: 575-587.
  • Schmidt P (2006) Evolution of homochirality by epimerization of random peptide chains. A Stochastic Model. Orig Life Evol Biosph 36: 391-411.
  • Schwendinger MG, Rode BM (1989) Possible role of copper and sodium chloride in prebiotic evolution of peptides. Analytical Science 5: 411-444.
  • Thom R (1975) Stabilité structurelle et morphogénèse: essai d'une théorie générale des modèles. pp 348-362, Addison-Wesley, Inc, USA.
  • Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37 (Database issue): D933-D937.
  • Wattis JA, Coveney PV (2005) Symmetry-breaking in chiral polymerisation. Orig Life Evol Biosph 35: 243-273.
  • Wickramasinghe RH (1973) Iron-sulphur proteins: Their possible place in the origin of life and the development of early metabolic systems Space Life Sciences 4: 341-352.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv61p253kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.