Preferences help
enabled [disable] Abstract
Number of results
2013 | 60 | 4 | 539-546
Article title

Interactions of sialic acid with phosphatidylcholine liposomes studied by 2D NMR spectroscopy

Title variants
Languages of publication
Biological membranes are complex systems which have attracted scientific interest for a long time and for various reasons. The sialic acid-liposome interactions at the molecular level depend on their hydro-lipophilic characteristics. The aim of the present study was to investigate the changes of conformation of the phospholipid (1,2-Diacyl-sn-glycero-3-phosphocholine) and sialic acid (2,8-(N-acetylneuraminic acid)) molecules and the type of interactions induced by the sialic acid molecules on membrane-like systems (liposomes) by 2D NMR (TOCSY, HETCOR, ROESY). The nature of the interaction of sialic acid with the model membrane depends on the structure of the phospholipid headgroups and the hydration of membrane. In ROESY spectra was observed the absence of dipole-dipole couplings within the choline head, between headgroups and glycerol, and between glycerol and fatty acid chains. It indicates an increase of the membrane dynamics in the presence of sialic acid. Moreover, the conformation of sialic acid molecule is changed in the presence of liposomes, which depends on stereochemistry of the chemical groups of the carbon atoms C7 and C8, and oxygen O8. The observed differences between the ROESY spectra of free and liposome bound sialic acid may be a consequence of a changed orientation of the pyranose ring from trans to gauche in the presence of liposomes. The sialic acid penetrate into the phospholipid bilayer to a sufficient depth to allow the dipole interaction. The present result that the correlation signal was found only between the methyl protons from the acetyl group of sialic acid and the methylene tail of phospholipid molecule in the ROESY spectrum indicates that the opposite end of the sialic acid molecule stays in the aqueous phase without interacting with membrane molecules.
Physical description
  • Laboratory of Biophysics, Department of Biotechnology, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
  • Laboratory of Biophysics, Department of Biotechnology, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
  • Barry GT, Goebel WF (1957) Colominic acid, a substance of bacterial origin related to sialic acid. Nature 179: 206-207.
  • Berquand A, Mingeot-Leclercq MP, Dufrene YE (2004) Real-time imaging of drug-membrane interactions by atomic force microscopy. Biochim Biophys Acta 1664: 198-205.
  • Bondioli L, Costantino L, Ballestrazzi A, Lucchesi D, Boraschi D, Pellati F, Benvenuti S, Tosi G, Vandelli M (2010) PLGA nanoparticles surface decorated with the sialic acid, N-acetylneuraminic acid. Biomaterials 31: 3395-3403.
  • Bonechi C, Ristori S, Martini G, Martini S, Rossi C (2009) Study of bradykinin conformation in the presence of model membrane by Nuclear Magnetic Resonance on molecular modeling. Biochim Biophys Acta 1788: 708-716.
  • Bonfanti L (2006) PSA-NCAM in mammalian structural plasticity and neurogenesis. Progress Neurobiol 80: 129-164.
  • Box A, Grzesiek S (1996) ROESY. In Encyclopedia of Nuclear Magnetic Resonance. Grant DN, Harris RK, eds, pp 4789-4804. JOHN WILEY & SONS, West Sussex.
  • Brinkman-Van der Linden EC, Sonnenburg JL, Varki A (2002) Effects of sialic acid substitutions on recognition by Sambucus nigra agglutinin and Maackia amurensis hemagglutinin. Anal Biochem 303: 98-104.
  • Brisson JR, Baumann H, Imberty A, Pérez S, Jennings HJ (1992) Helical epitope of the group B meningococcal α(2-8)-linked sialic acid polysaccharide. Biochemistry 31: 4996-5004.
  • Byrne B, Donohoe GG, O'Kennedy R (2007) Sialic acids: carbohydrate moieties that influence the biological and physical properties of biopharmaceutical proteins and living cells. Drug Discovery Today 12: 319-326.
  • Canet D, Robert JB (1995) Timescales in NMR: Relaxation phenomena in relaxation with molecular reorientation. In Dynamics of solutions and fluid mixtures by NMR. Delpuech J-J, ed, pp 345-396. JOHN WILEY & SONS, New York.
  • Friebolin H (1990) Basic one- and two-dimensional NMR spectroscopy. WILEY-VCH, Weinheim.
  • Gabrielska J, Gruszecki WI (1996) Zeaxanthin (dihydroxy-b-carotene) but not b-carotene rigidifies lipid membranes: a 1H-NMR study of carotenoid-egg phosphatidylcholine liposome. Biochim Biophys Acta 1285: 167-174.
  • Hartlieb S, Günzel A, Gerardy-Schahn R, Münster-Kühnel AK, Kirschning A, Dräger G (2008) Chemoenzymatic synthesis of CMP-N-acetyl-7-fluoro-7-deoxy-neuraminic acid. Carbohydrate Res 343: 2075-2082.
  • Hidari KI, Oyama K, Ito G, Nakayama M, Inai M, Goto S, Kanai Y, Watanabe K, Yoshida K, Furuta T, Kan T, Suzuki T (2009) Identification and characterization of flavonoids as sialyltransferase inhibitors. Biochem Biophys Res Commun 382: 609-613.
  • Horstkorte R, Mühlenhoff M, Reutter W, Nöhring S, Zimmermann-Kordmann M, Gerardy-Schahn R (2004) Selective inhibition of polysialyltransferase ST8SiaII by innatural sialic acids. Exp Cell Res 298: 268-274.
  • Inayat-ur-Rahman, Malik SA, Bashir M, Khan R, Iqbal M (2009) Serum sialic acid changes in non-insulin-dependant diabetes mellitus (NIDDM) patients following bitter melon (Momordica charantia) and rosiglitazone (Avandia) treatment. Phytomedicine 16: 401-405.
  • Janiak-Osajca A, Timoszyk A (2012) Application of 1H and 31P NMR to topological description of a model of biological membrane fusion. Acta Biochim Pol 59: 219-224.
  • Jeżowska I, Wolak A, Gruszecki WI, Strzałka K (1994) Effect of beta-carotene on structural and dynamic properties of model phosphatidylcholine membranes. II. A 31P and 1H-NMR study. Biochim Biophys Acta 1194: 143-148.
  • Kaatze U, Göpel KD, Pottel R (1985) Zwitterion motions of differently aggregated phospholipids in aqueous and methanolic solution. A dielectric relaxation study. J Phys Chem 89: 256-2571.
  • Kadkhodaei M, Rivas O, Tan M, Mohebbi A, Shaka AJ (1991) Broadband homonuclear cross polarization using flip-flop spectroscopy. J Magn Reson 91: 437-443.
  • Klösgen B, Reichle C, Kohlsmann S, Kramer KD (1996) Dielectric spectroscopy as a sensor of membrane headgroup mobility and hydration. Biophys J 71: 3251-3260.
  • Kuczera J, Gabrielska J, Kral TE, Przestalski S (1997) A synergistic effect of select organotin compounds and ionic surfactants on liposome membranes. Appl Organic Chem 11: 591-600.
  • Latanowicz L, Medycki W, Jakubas R (2011) Complex molecular dynamics of (CH3NH3)5Bi2Br11 (MAPBB) protons from NMR relaxation and second moment of NMR spectrum. J Magn Reson 211: 207-216.
  • Leal L, Rögnvaldsson S, Fossheim S, Nilssen EA, Topgaard D (2008) Dynamic and structural aspects of PEGylated liposomes monitored by NMR. J Colloid Interface Sci 325: 485-493.
  • Lindberg G (2007) Resialylation of sialic acid deficit vascular endothelium circulating cells and macromolecules may counteract the development of atherosclerosis: a hypothesis. Atherosclerosis 192: 243-245.
  • Lindman B, Olsson U, Söderman O (1995) Surfactant solutions: aggregation phenomena and microheterogenity. In Dynamics of solutions and fluid mixtures by NMR. Delpuech J-J, ed, pp 345-396. John Wiley & Sons, New York.
  • Marcotte I, Separovic F, Auger M, Gagné S (2004) A multidimensional 1H-NMR investigation of the conformation of Methionine - Enkephalin in fast-tumbling bicells. Biophys J 86: 1587-1600.
  • McGuire EJ, Binkley SB (1964) The structure and chemistry of colominic acid. Biochemistry 3: 247-251.
  • Morita S, Shimanouchi T, Sasaki H, Umakoshi H, Kuboi R (2003) Detection of a heat stress-mediated interaction between protein and phospholipid membrane using dielectric measurement. J Biosci Bioeng 95: 252-256.
  • Murphy JA, Nickerson PE, Clarke DB (2007) Injury to retinal ganglion cell axons increases polysialylated neural cell adhesion molecule (PSA-NCAM) in the adult rodent superior colliculus. Brain Res 1163: 21-32.
  • Pentak D, Sułkowska A, Sułkowski WW (2008) Application of NMR and UV spectroscopy in the study of interactions between anticancer drugs and their phospholipids carriers. J Mol Struct 887: 187-193.
  • Pohle W, Gauger DR, Bohl M, Mrazkova E, Hobza P (2004) Lipid hydration: headgroup CH moieties are involved in water binding. Biopolymers 74: 27-31.
  • Potrzebowski MJ, Kaźmierski S, Michalska M, Olejniczak S, Ciesielski W (2001) Investigation of structure and motional behavior 1,6:3,4-dianhydro-2-O-tosyl-b-d-galactopyranose in solution by means multiple-field NMR spectroscopy. J Mol Struct 597: 7-19.
  • Pozo Navas B, Lohner K, Deutsch G, Sevcsik E, Riske KA, Dimova R, Garidel P, Pabst G (2005) Composition dependence of vesicle morphology and mixing properties in a bacterial model membranes system. Biochim Biophys Acta 1716: 40-48.
  • Rutishauser U (1998) Polysialic acid at the cell surface: biophysics in service of cell interactions and tissue plasticity. J Cellular Biochem 70: 304-312.
  • Sabín J, Prieto G, Ruso JM, Hidalgo-Álvarez R, Sarmiento F (2006) Size and stability of liposomes: A possible role of hydration and osmotic forces. Eur Phys J E Soft Matter 20: 401-408.
  • Schauer R (1982) Chemistry, metabolism, and biological functions of sialic acids. Adv Carbohydrate Chem Biochem 40: 131-234.
  • Schauer R (2004a) Sialic acids: fascinating sugars in higher animals and man. Zoology 107: 49-64.
  • Schauer R (2004b) Victor Ginsburg's influence on my research of the role of sialic acids in biological recognition. Arch Biochem Biophys 426: 132-141.
  • Schleucher J, Quant J, Glaser SJ, Griesinger C (1996) TOCSY in ROESY & ROESY In TOCSY. In Encyclopedie of Nuclear Magnetic Resonance. Grant DN, Harris RK, eds, pp 4789-4804. John Wiley & Sons, West Sussex.
  • Seidenfaden R, Krauter A, Schertzinger F, Gerardy-Schahn R (2003) Polysialic acid directs tumor cell growth by controlling heterophilic Neural Cell Adhesion Molecule interactions. Mol Cell Biol 23: 5908-5918.
  • Shimanouchi T, Sasaki M, Hiroiwa A, Yoshimoto N, Miyagawa K, Umakoshi H, Kuboi R (2011) Relationship between the mobility of phosphocholine headgroups of liposomes and the hydrophobic at membrane interface: A characterization with spectrophotometric measurements. Colloids and Surfaces B: Biointerfaces 88: 221-230.
  • Smith G, Shekunov BY, Shen J, Duffy AP, Anwar J, Wakerly MG, Chakrabarti R (1996) Dielectric analysis of phosphorylcholine head group mobility in egg lecithin liposomes. Pharm Res 13: 1181-1185.
  • Tan O, Fadiel A, Chang A, Demir N, Jeffrey R, Horvath T, Garcia-Segura LM, Naftolin F (2009) Estrogens regulate posttranslational modification of Neural Cell Adhesion Molecule during the estrogen-induced gonadotropin surge. Endocrynology 150: 2783-2790.
  • Timoszyk A, Gdaniec Z, Latanowicz L (2004) The effect of polysialic acid on molecular dynamics of model membranes studied by 31P NMR spectroscopy. Solid State Nucl Magn Reson 25: 142-145.
  • Timoszyk A, Janas T (2003) Effect of sialic acid polymers on dynamic properties of lecithin liposomes modified with the cationic octadecylamine. Mol Physics Rep 37: 67-70.
  • Walde P, Blochliger E (1997) Circular dichroic properties of phosphatidylcholine liposomes. Langmuir 13: 1668-1671.
  • Wang B (2009) Sialic acid is an essential nutrient of brain development and cognition. Annu Rev Nutr 29: 177-183.
  • Wenk RW, Seelig J (1998) Proton induced vesicle fusion and the isothermal LaHII phase transition of lipid bilayers: a 31P-NMR and titration calorimetry study. Biochim Biophys Acta 1372: 227-236.
  • Yamamoto I, Konto A, Handa T, Miyajima K (1995) Regulation of phospholipase D activity by neutral lipids in egg-yolk phosphatidylcholine small unilamellar vesicles and by calcium ion in aqueous medium. Biochim Biophys Acta 1233: 21-26.
  • Yamasaki R (1988) 2D NMR analysis of group B capsular polysaccharide of N. Meningitidis complete assignment of 1H-NMR spectrum of B polysaccharide of strain. Biochem Biophys Res Commun 154: 159-164.
  • Yamasaki R, Bacon B (1991) Three-dimensional structural analysis of the group B polysaccharide of Nesseria meningitides 6275 by two-dimensional NMR. Biochemistry 30: 851-857.
  • Yokono S, Ogli K, Miura S, Ueda I (1989) 400 MHz two-dimensional nuclear Overhauser spectroscopy on anesthetic interaction with lipid bilayer. Biochim Biophys Acta 982: 300-302.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.