PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 60 | 4 | 531-537
Article title

Microscopic findings for the study of biofilms in food environments

Content
Title variants
Languages of publication
EN
Abstracts
EN
The capability of bacteria to colonize food processing surfaces and to form biofilm has become an emerging concern for food industry. The presence and persistence of biofilm on food processing surfaces may pose a risk of food spoilage or food poisoning. A better understanding of bacterial adhesion and resistance of biofilms is needed to ensure quality and safety of food products. This review focuses on microscopic approaches incorporated to explore biofilm mode of existence in food processing environments. An application of antimicrobial agents for the biofilm control, in particular for bacteria connected with food processing environments, is also highlighted. In addition, some aspects of biofilm resistance, especially the phenomenon of persister cells, are discussed.
Publisher

Year
Volume
60
Issue
4
Pages
531-537
Physical description
Dates
published
2013
received
2013-10-31
revised
2013-12-10
accepted
2013-12-19
Contributors
  • Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
References
  • Araujo JC, Mortara R, Campos JR, Vazoller RF (2004) Development and analysis of anaerobic biofilms onto hydrophobic and hydrophilic surfaces. Environ Technol 25: 809-817.
  • Araújo P, Lemos M, Mergulhão F, Melo L, Simões M (2011) Antimicrobial resistance to disinfectants in biofilms. Science against microbial pathogens - communicating current research and technological advances. Méndez-Vilas A, ed, pp 826-834. Formatex Research Center, Badajoz, Spain.
  • Arnold JW, Bailey GW (2000) Surface finishes on stainless steel reduce bacterial attachment and early biofilm formation: scanning electron and atomic force microscopy study. Poult Sci 79: 1839-1845.
  • Bagge D, Hjelm M, Johansen C, Huber I, Gram L (2001) Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces. Appl Environ Microbiol 67: 2319-2325.
  • Bai AJ, Rai VR (2011) Bacterial quorum sensing and food industry. Compr Rev Food Sci F 10: 183-193.
  • Bos R, van der Mei HC, Gold J, Busscher HJ (2000) Retention of bacteria on a substratum surface with micro-patterned hydrophobicity. FEMS Microbiol Lett 189: 311-315.
  • Brigitte C, Elissa K, Olivier F, Souad C (2012) Bacterial persistence and transient survival on open surface. JHED 1: 54-56.
  • Cho B-K, Chen Y-R, Kim MS (2007) Multispectral detection of organic residues on poultry processing plant equipment based on hyperspectral reflectance imaging technique. Comput Electron Agr 57: 177-189.
  • Czaczyk K, Myszka K (2007) Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Polish J Environ Stud 16: 799-806.
  • Faille C, Jullien C, Fontaine F, Bellon-Fontaine MN, Slomianny C, Benezech T (2002) Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: role of surface hydrophobicity. Can J Microbiol 48: 728-38.
  • Fuster-Valls N, Hernández-Herrero M, Marín-de-Mateo M, Rodríguez-Jerez JJ (2008) Effect of different environmental conditions on the bacteria survival on stainless steel surfaces. Food Control 19: 308-314.
  • Giaouris E, Chorianopoulos N, Skandamis P, Nychas G-J (2012) Attachment and biofilm rormation by Salmonella in food processing environments, In Salmonella - A Dangerous Foodborne Pathogen. Barakat S M Mahmoud ed, pp 157-180. InTech, Rijeka, Croatia.
  • Joux F, Lebaron F (2000) Use of fluorescent probes to assess physiological functions of bacteria at single-cell level. Microbes Infection 2: 1523-1535.
  • Juhna T, Birzniece D, Larsson S, Zulenkovs D, Sharipo A, Azevedo NF, Ménard-Szczebara F, Castagnet S, Féliers C, Keevil CW (2007) Detection of Escherichia coli in biofilms from pipe samples and coupons in drinking water distribution networks. Appl Environ Microbiol 73: 7456-7464.
  • Jun W, Kim MS, Lee K, Millner P, Chao K (2009) Assessment of bacterial biofilm on stainless steel by hyperspectral fluorescence imaging. Sens & Instrumen Food Qual 3: 41-48.
  • Jun W, Lee K, Millner P, Sharma M, Chao K, Kim MS (2008) Detection of bacterial biofilm on stainless steel by hyperspectral fluorescence imaging. Food Processing Automation Conference: 701P0508cd.
  • Kang S, Lee K, Son J, Kim MS (2011) Detection of fecal contamination on leafy greens by hyperspectral imaging. Procedia Food Sci 1: 953-959.
  • Keren I, Shah D, Spoering A, Kaldalu N, Lewis K (2004) Specialized persister cells and mechanism of multidrug tolerance in E. coli. J Bacteriol 186: 8172-8180.
  • Kim J, Hahn JS, Franklin MJ, Stewart PS, Yoon J (2009) Tolerance of dormant and active cells in Pseudomonas aeruginosa PA01 biofilm to antimicrobial agents. J Antimicrob Chemother 63: 129-35.
  • Kim J, Pitts B, Stewart PS, Camper A, Yoon J (2008) Comparison of the antimicrobial effects of chlorine, silver ion, and tobramycin on biofilm. Antimicrob Agents Chemother 52: 1446-1453.
  • Kim JS, Heo P, Yang TJ, Lee KS, Jin YS, Kim SK, Shin D, Kweon DH (2011) Bacterial persisters tolerate antibiotics by not producing hydroxyl radicals. Biochem Biophys Res Commun 413: 105-110.
  • Kiskó G, Szabó-Szabó O (2011) Biofilm removal of Pseudomonas strains using hot water sanitation. Acta Univ Sapientiae, Alimentaria 4: 69-79.
  • Kokare CR, Chakraborty S, Khopade AN, Mahadik KR (2009) Biofilm: importance and applications. Ind J Biotech 8: 159-168.
  • Krimmer V, Merkert H, von Eiff C, Frosch M, Eulert J, Löhr JF, Hacker J, Ziebuhr W (1999) Detection of Staphylococcus aureus and Staphylococcus epidermidis in clinical samples by 16S rRNA-directed in situ hybridization. J Clin Microbiol 37: 2667-2673.
  • Kubota H, Senda S, Nomura N, Tokuda H, Uchiyama H (2008) Biofilm formation by lactic acid bacteria and resistance to environmental stress. J Biosci Bioeng 106: 381-386.
  • Kwiatkowska J, Matuszewska E, Kuczynska-Wisnik D, Laskowska E (2008) Aggregation of Escherichia coli proteins during stationary phase depends on glucose and oxygen availability. Res Microbiol 159: 651-657.
  • Leszczynska D, Matuszewska E, Kuczynska-Wisnik D, Furmanek-Blaszk B, Laskowska E (2013) The formation of persister cells in stationary-phase cultures of Escherichia coli is associated with the aggregation of endogenous proteins. PLoS ONE 8: e54737.
  • Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45: 999-1007.
  • Lewis K (2010) Persister cells. Annu Rev Microbiol 64: 357-372.
  • Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochemistry (Mosc.) 70: 267-274.
  • Lindsay D, von Holy A (2006) What food safety professionals should know about bacterial biofilms. British Food J 108: 27-37.
  • Mikš-Krajnik M, Babuchowski A, Białobrzewski I (2013) Impact of physiological state of starter culture on ripening and flavour development of Swiss-Dutch-type cheese. Int J Dairy Tech 66: 562-569.
  • Moter A, Göbel UB (2000) Fluorescence in situ hybridization for direct visualization of microorganisms. J Microbiol Methods 41: 85-112.
  • Myszka K, Czaczyk K (2011) Bacterial biofilms on food contact surfaces - a review. Pol J Food Nutr Sci 61: 173-180.
  • Nosyk O, Haseborg E, Metzger U, Frimmel FH (2008) A standardized pre-treatment method of biofilm flocs for fluorescence microscopic characterization. J Microbiol Methods 75: 449-456.
  • Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43: 93-100.
  • Olszewska M, Łaniewska-Trokenheim Ł (2013) Responses of lactic acid bacteria to stress - VBNC state. Zywnosc Nauka Technologia Jakosc 90: 15-28.
  • Shah D, Zhang Z, Khodursky A, Kaldalu N, Kurg K, Lewis K (2006) Persisters: a distinct physiological state of E. coli. BMC Microbiol 6: 53.
  • Shi X, Zhu X (2009) Biofilm formation and food safety in food industries. Trends Food Sci Tech 20: 407-413.
  • Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. LWT-Food Sci Technol 43: 573-583.
  • Srey S, Jahid IK, Ha S-D (2013) Biofilm formation in food industries: a food safety concern. Food Control 31: 572-585.
  • Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292: 107-113.
  • Takeuchi K, Frank JF (2000) Penetration of Escherichia coli O157:H7 into lettuce tissues as affected by inoculum size and temperature and the effect of chlorine treatment on cell viability. J Food Prot 63: 434-440.
  • Takeuchi K, Frank JF (2001a) Expression of red-shifted green fluorescent protein by Escherichia coli O157:H7 as a marker for the detection of cells on fresh produce. J Food Prot 64: 298-304.
  • Takeuchi K, Frank JF (2001b) Confocal microscopy and microbial viability detection for food research. J Food Prot 64: 2088-2102.
  • Takeuchi K, Matute CM, Hassan AN, Frank JF (2000) Comparison of the attachment of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, and Pseudomonas fluorescens to lettuce leaves. J Food Prot 63: 1433-1437.
  • Trachoo N (2003) Biofilms and the food industry. Songklanakarin J Sci Technol 25: 807-815.
  • Trachoo N, Frank JF (2002) Effectiveness of chemical sanitizers against Campylobacter jejuni-containing biofilms. J Food Prot 65: 1117-1121.
  • Trachoo N, Frank JF, Stern NJ (2002) Survival of Campylobacter jejuni in biofilms isolated from chicken houses. J Food Prot 65: 1110-1116.
  • Van Houdt R, Michiels CW (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109: 1117-1131.
  • Vroom JM, De Grauw KJ, Gerritsen HC, Bradshaw DJ, Marsh PD, Watson GK, Birmingham JJ, Allison C (1999) Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl Environ Microbiol 65: 3502-3511.
  • Wirtanen G, Salo S, Helander IM, Mattila-Sandholm T (2001) Microbiological methods for testing disinfectant efficiency on Pseudomonas biofilm. Colloids Surf B 20: 37-50.
  • Zandri G, Pasquaroli S, Vignaroli C, Talevi S, Manso E, Donelli G, Biavasco F (2012) Detection of viable but non-culturable staphylococci in biofilms from central venous catheters negative on standard microbiological assays. Clin Microbiol Infec 18: E259-E261.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv60p531kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.