PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 60 | 4 | 523-530
Article title

Silver nanoparticles as an alternative strategy against bacterial biofilms

Content
Title variants
Languages of publication
EN
Abstracts
EN
Biofilms are complex bacterial communities that resist the action of antibiotics and the human immune system. Bacteria within biofilms are the cause of numerous, almost impossible to eradicate, persistent infections. Biofilms can form on many medical devices and implants, and so have an enormous impact on medicine. Due to the lack of effective anti-biofilm antibiotics, novel alternative compounds or strategies are urgently required. This review describes some of the latest approaches in the field of biofilm treatment. New anti-biofilm technologies target different stages in the biofilm formation process. Some act to modify the colonized biomaterials to make them resistant to biofilm formation. One potentially important candidate treatment uses silver nanoparticles that show anti-bacterial and anti-biofilm activity. The biological action of nano-silver is complex and seems to involve a number of pathways. However, there have been few reports on the anti-biofilm activity of silver nanoparticles and the precise mechanism underlying their action remains unresolved. Here, we describe some anti-biofilm approaches employing AgNPs and consider the challenges and problems that need to be addressed in order to make silver nanoparticles a part of an effective anti-biofilm strategy.
Publisher

Year
Volume
60
Issue
4
Pages
523-530
Physical description
Dates
published
2013
received
2013-10-30
revised
2013-12-02
accepted
2013-12-13
Contributors
  • Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
author
  • Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
  • Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
References
  • Abraham NM, Lamlertthon S, Fowler VG, Jefferson KK (2012) Chelating agents exert distinct effects on biofilm formation in Staphylococcus aureus depending on strain background: role for clumping factor B. J Med Microbiol 61: 1062-1070.
  • Ahamed M, AlSalhi MS, Siddiqui MK (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411: 1841-1848.
  • Ammons MC, Ward LS, James GA (2011) Anti-biofilm efficacy of a lactoferrin/xylitol wound hydrogel used in combination with silver wound dressings. Int Wound J 8: 268-273.
  • Applerot G, Lellouche J, Perkas N, Nitzan Y Gedanken A, Banin E (2012) ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Advances 2: 2314.
  • Asharani PV, Lian Wu Y, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19: 255102.
  • Beyth N, Houri-Haddad Y, Baraness-Hadar L, Yudovin-Farber I, Domb AJ, Weiss EI (2008) Surface antimicrobial activity and biocompatibility of incorporated polyethylenimine nanoparticles. Biomaterials 29: 4157-4163.
  • Blander JM, Sander LE (2012) Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nat Rev Immunol 12: 215-225.
  • Carson L, Gorman SP, Gilmore BF (2010) The use of lytic bacteriophages in the prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli. FEMS Immunol Med Microbiol 59: 447-455.
  • Cegelski L, Pinkner JS, Hammer ND, Cusumano CK, Hung CS, Chorell E, Aberg V, Walker JN, Seed PC, Almqvist F, Chapman MR, Hultgren SJ (2009) Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol 5: 913-919.
  • Chen M, Yu Q, Sun H (2013) Novel Strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci 14: 18488-18501.
  • Cheng L, Weir MD, Xu HH, Antonucci JM, Kraigsley AM, Lin NJ, Lin-Gibson S, Zhou X (2012) Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent Mater 28: 561-572.
  • Christensen QH, Grove TL, Booker SJ, Greenberg EP (2013) A high-throughput screen for quorum-sensing inhibitors that target acyl-homoserine lactone synthases. PNAS 110: 13815-13820.
  • Corrigan RM, Abbott JC, Burhenne H, Kaever V, Gründling A (2011) c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog 7: e1002217.
  • Damm C, Münstedt H (2008) Kinetic aspects of the silver ion release from antimicrobial polyamide/silver nanocomposites. Appl Phys A Mater Sci Process 91: 479-486.
  • Defoirdt T, Brackman G, Coenye T (2013) Quorum sensing inhibitors: how strong is the evidence? Trends Microbiol 12: 619-24.
  • Deligianni E, Pattison S, Berrar D, Ternan NG, Haylock RW, Moore JE, Elborn SJ, Dooley JS (2010) Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. BMC Microbiol 10: 38.
  • Desrousseaux C, Sautou V, Descamps S, Traoré O (2013) Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. J Hosp Infect 85: 87-93.
  • Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7: 277-281.
  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8: 881-890.
  • Donlan RM (2009) Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol 17: 66-72.
  • Fabrega J, Renshaw JC, Lead JR (2009) Interactions of silver nanoparticles with Pseudomonas putida biofilms. Environ Sci Technol 43: 9004-9009.
  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8: 623-633.
  • Flemming RG, Capelli CC, Cooper SL, Proctor RA (2000) Bacterial colonization of functionalized polyurethanes. Biomaterials 21: 273-281.
  • Gjermansen M, Ragas P, Sternberg C, Molin S, Tolker-Nielsen T (2005) Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol 7: 894-906.
  • Gotoh Y, Eguchi Y, Watanabe T, Okamoto S, Doi A, Utsumi R (2010) Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr Opin Microbiol 13: 232-239.
  • Gravante G, Montone A (2010) A retrospective analysis of ambulatory burn patients: focus on wound dressings and healing times. Ann R Coll Surg Engl 92: 118-123.
  • Han Z, Pinkner JS, Ford B, Obermann R, Nolan W, Wildman SA, Hobbs D, Ellenberger T, Cusumano C, Hultgren SJ, Janetka JW (2010) Structure-based drug design and optimization of mannoside bacterial FimH antagonists. J Med Chem 53: 4779-4792.
  • Hanlon GW, Denyer SP, Olliff CJ, Ibrahim LJ (2001) Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 67: 2746-2753.
  • Hartmann T, Mühling M, Wolf A, Mariana F, Maskow T, Mertens F, Neu TR, Lerchner J (2013) A chip-calorimetric approach to the analysis of Ag nanoparticle caused inhibition and inactivation of beads-grown bacterial biofilms. J Microbiol Methods 95: 129-137.
  • Haussler S, Fuqua C (2013) Biofilms 2012: New discoveries and significant wrinkles in a dynamic field. J Bacteriol 195: 2947-2958.
  • Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4: 746-750.
  • Islam MS, Larimer C, Ojha A, Nettleship I (2013) Antimycobacterial efficacy of silver nanoparticles as deposited on porous membrane filters. Mater Sci Eng C Mater Biol Appl 33: 4575-4581.
  • Jena P, Mohanty S, Mallick R, Jacob B, Sonawane A (2012) Toxicity and antibacterial assessment of chitosancoated silver nanoparticles on human pathogens and macrophage cells. Int J Nanomedicine 7: 1805-1818.
  • Kalishwaralal K, BarathManiKanth S, Pandian SR, Deepak V, Gurunathan S (2010) Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids and Surfaces B: Biointerfaces 79: 340-344.
  • Karatan E, Duncan TR, Watnick PI (2005) NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. J Bacteriol 187: 7434-7443.
  • Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73: 310-347.
  • Khan AU (2012) Medicine at nanoscale: a new horizon. Int J Nanomedicine 7: 2997-2998.
  • Kharidia R, Liang JF (2011) The activity of a small lytic peptide PTP-7 on Staphylococcus aureus biofilms. J Microbiol 49: 663-668.
  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park JK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3: 95-101.
  • Knetsch MLW, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3: 340-366.
  • Kolodkin-Gal I, Cao S, Chai L, Böttcher T, Kolter R, Clardy J, Losick R (2012) A self-produced trigger for biofilm disassembly that targets exopolysaccharide. Cell 149: 684-692.
  • Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R (2010) D-amino acids trigger biofilm disassembly. Science 328: 627-629.
  • Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3: a010306.
  • Kurek A, Grudniak AM, Kraczkiewicz-Dowjat A, Wolska KI (2011) New antibacterial therapeutics and strategies. Pol J Microbiol 60: 3-12.
  • Lackner P, Beer R, Broessner G, Helbok R, Galiano K, Pleifer C, Pfausler B, Brenneis C, Huck C, Engelhardt K, Obwegeser AA, Schmutzhard E (2008) Efficacy of silver nanoparticles-impregnated external ventricular drain catheters in patients with acute occlusive hydrocephalus. Neurocrit Care 8: 360-365.
  • Lee KJ, Browning LM, Nallathamby PD, Osgood CJ, Xu XH (2013) Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish. Nanoscale 5: 11625-36.
  • Lellouche J, Friedman A, Gedanken A, Banin E (2012) Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. Int J Nanomedicine 7: 5611-5624.
  • Lewis K (2010) Persister cells. Ann Rev Microbiol 64: 357-372.
  • Li Y, Leung P, Yao L, Song QW, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62: 58-63.
  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5: 916-924.
  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12: 527-534.
  • Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci USA 104: 11197-11202.
  • Ma Q, Yang Z, Pu M, Peti W, Wood TK (2011) Engineering a novel c-di-GMP-binding protein for biofilm dispersal. Environ Microbiol 13: 631-642.
  • Mah TF, O'Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9: 34-39.
  • Martinez-Gutierrez F, Boegli L, Agostinho A, Sánchez EM, Bach H, Ruiz F, James G (2013) Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling 29: 651-660.
  • Martino PD, Fursy R, Bret L, Sundararaju B, Phillips RS (2003) Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can J Microbiol 49: 443-449.
  • McWhirter SM, Barbalat R, Monroe KM, Fontana MF, Hyodo M, Joncker NT, Ishii KJ, Akira S, Colonna M, Chen ZJ, Fitzgerald KA, Hayakawa Y, Vance RE (2009) A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. J Exp Med 206: 1899-1911.
  • Menzies BE (2003) The role of fibronectin binding proteins in the pathogenesis of Staphylococcus aureus infections. Curr Opin Infect Dis 16: 225-229.
  • Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A (2012) An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomedicine 8: 916-924.
  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346.
  • Ní Eidhin D, Perkins S, Francois P, Vaudaux P, Höök M, Foster TJ (1998) Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol Microbiol 30: 245-257.
  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73: 1712-1720.
  • Panáček A, Kvítek L, Prucek R, Kolar M, Vecerova R, Pizúrova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110: 16248-16253.
  • Panmanee W, Taylor D, Shea CJ, Tang H, Nelson S, Seibel W, Papoian R, Kramer R, Hassett DJ, Lamkin TJ (2013) High-throughput screening for small-molecule inhibitors of Staphylococcus epidermidis RP62a biofilms. J Biomol Screen 18: 820-829 doi: 10.1177/1087057113481499.
  • Park HJ, Park S, Roh J, Kim S, Choi K, Yi J, Kim J, Yoon J (2013) Biofilm-inactivating activity of silver nanoparticles: A comparison with silver ions. J Ind Eng Chem 19: 614-619.
  • Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32: 9810-9817.
  • Parsek MR, Singh PK (2003) Bacterial biofilms: An emerging link to disease pathogenesis. Annu Rev Microbiol 57: 677-701.
  • Patel CN, Wortham BW, Lines JL, Fetherston JD, Perry RD, Oliveira MA (2006) Polyamines are essential for the formation of plague biofilm. J Bacteriol 188: 2355-2363.
  • Pauksch L, Hartmann S, Rohnke M, Szalay G, Alt V, Schnettler R, Lips KS (2014) Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomaterialia 10: 439-49.
  • Peach KC, Bray WM, Shikuma NJ, Gassner NC, Lokey RS, Yildiz FH, Linington RG (2011) An image-based 384-well high-throughput screening method for the discovery of biofilm inhibitors in Vibrio cholerae. Mol Biosyst 7: 1176.
  • Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65: 1803-15.
  • Percival SL, Bowler PG, Russell D (2005a) Bacterial resistance to silver in wound care. J Hosp Infect 60: 1-7.
  • Percival SL, Kite P, Eastwood K, Murga R, Carr J, Arduino MJ, Donlan RM (2005b) Tetrasodium EDTA as a novel central venous catheter lock solution against biofilm. Infect Control Hosp Epidemiol 26: 515-519.
  • Pompilio A, Scocchi M, Pomponio S, Guida F, Di Primio A, Fiscarelli E, Gennaro R, Di Bonaventura G (2011) Antibacterial and anti-biofilm effects of cathelicidin peptides against pathogens isolated from cystic fibrosis patients. Peptides 32: 1807-1814.
  • Radzig MA, Nadtochenko VA, Koksharova OA, Kiwi J, Lipasova VA, Khmel IA (2013) Antibacterial effects of silver nanoparticles on gram-negative bacteria: Influence on the growth and biofilms formation, mechanisms of action. Colloids and Surfaces B: Biointerfaces 102: 300-306.
  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27: 76-83.
  • Reid DW, Withers NJ, Francis L, Wilson JW, Kotsimbos TC (2002) Iron deficiency in cystic fibrosis: Relationship to lung disease severity and chronic Pseudomonas aeruginosa infection. Chest 121: 48-54.
  • Rendueles O, Kaplan JB, Ghigo JM (2013) Antibiofilm polysaccharides. Environ Microbiol 15: 334-346.
  • Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61: 869-876.
  • Roy V, Meyer MT, Smith JA, Gamby S, Sintim HO, Ghodssi R, Bentley WE. (2013) AI-2 analogs and antibiotics: a synergistic approach to reduce bacterial biofilms. Appl Microbiol Biotechnol 97: 2627-2638.
  • Santoro CM, Duchsherer NL, Grainger DW (2007) Antimicrobial efficacy and ocular cell toxicity from silver nanoparticles. Nanobiotechnology 3: 55-65.
  • Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7: 2767-2781.
  • Shanks RM, Sargent JL, Martinez RM, Graber ML, O'Toole GA (2006) Catheter lock solutions influence staphylococcal biofilm formation on abiotic surfaces. Nephrol Dial Transplant 21: 2247-2255.
  • Shi Z, Neoh KG, Kang ET, Wang W (2006) Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials 27: 2440-2449.
  • Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27: 341-353.
  • Simm R, Morr M, Kader A, Nimtz M, Römling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53: 1123-1134.
  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275: 177-182.
  • Tan SY, Chua SL, Chen Y, Rice SA, Kjelleberg S, Nielsen TE, Yang L, Givskov M (2013) Identification of five structurally unrelated quorum-sensing inhibitors of Pseudomonas aeruginosa from a natural-derivative database. Antimicrob Agents Chemother 57: 5629-5641.
  • Thiwawong T, Onlaor K, Tunhoo B (2013) A humidity sensor based on silver nanoparticles thin film prepared by electrostatic spray deposition process. Adv Mater Sci Eng doi: 10.1155/2013/640428.
  • Valle J, Da Re S, Henry N, Fontaine T, Balestrino D, Latour-Lambert P, Ghigo JM. (2006) Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc Natl Acad Sci USA 103: 12558-12563.
  • Valle J, Solano C, García B, Toledo-Arana A, Lasa I (2013) Biofilm switch and immune response determinants at early stages of infection. Trends Microbiol 21: 364-371.
  • Wolska KI, Grześ K, Kurek A (2012) Synergy between novel antimicrobials and conventional antibiotics or bacteriocins. Pol J Microbiol 61: 95-104.
  • Wong KKY, Liu X (2010) Silver nanoparticles-the real 'silver bullet' in clinical medicine? Med Chem Comm 1: 125.
  • Woodward JJ, Iavarone AT, Portnoy DA (2010) c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328: 1703-1705.
  • Xu XH, Brownlow WJ, Kyriacou SV, Wan Q, Viola JJ (2004) Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry 43: 10400-10413.
  • Zhang Y, Hu Z (2013) Combined treatment of Pseudomonas aeruginosa biofilms with bacteriophages and chlorine. Biotechnol Bioeng 110: 286-295.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv60p523kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.