PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 60 | 4 | 515-521
Article title

Beneficial and harmful roles of bacteria from the Clostridium genus

Content
Title variants
Languages of publication
EN
Abstracts
EN
Bacteria of the Clostridium genus are often described only as a biological threat and a foe of mankind. However, many of them have positive properties and thanks to them they may be used in many industry branches (e.g., in solvents and alcohol production, in medicine, and also in esthetic cosmetology). During the last 10 years interest in application of C. botulinum and C. tetani in medicine significantly increased. Currently, the structure and biochemical properties of neurotoxins produced by these bacterial species, as well as possibilities of application of such toxins as botulinum as a therapeutic factor in humans, are being intensely researched. The main aim of this article is to demonstrate that bacteria from Clostridium spp. are not only pathogens and the enemy of humanity but they also have many important beneficial properties which make them usable among many chemical, medical, and cosmetic applications.
Publisher

Year
Volume
60
Issue
4
Pages
515-521
Physical description
Dates
published
2013
received
2013-10-18
revised
2013-12-02
accepted
2013-12-05
Contributors
author
  • Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
  • Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
  • Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
  • Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
References
  • Aldape MJ, Bryant AE, Stevens DL (2006) Clostridium sordellii infection: Epidemiology, clinical findings, and current perspectives on diagnosis and treatment. Clin Infect Dis 43: 1436-1446.
  • Aureli P, Franciosa G, Fenicia L (2008) Botulism. International Encyclopedia of Public Health 329-337.
  • Bankar SB, Survase SA, Singhal RS, Granström T (2012) Continuous two stage acetone-butanol-ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B 5313. Bioresour Technol 106: 110-116.
  • Barbé S, Van Mellaert L, Anné J (2006) The use of clostridial spores for cancer treatment. J Appl Microbiol 101: 571-578.
  • Barber JM, Robb FT, Webster JR, Woods DR (1979) Bacteriocin production by Clostridium acetobutylicum in an industrial fermentation process. Appl Environ Microbiol 37: 433-437.
  • Barnes MA, Ho AS, Malhotra PS, Koltai PJ, Messner A (2011) The use of botulinum toxin for pediatric cricopharyngeal achalasia. Int J Pediatr Otorhi 75: 1210-1214.
  • Beckers L, Hiligsmann S, Hamilton Ch, Masset J, Thonart P (2010) Fermentative hydrogen production by Clostridium butyricum CWBI1009 and Citrobacter freundii CWBI952 in pure and mixed cultures. Biotechnol Agron Soc Environ 14 (S2): 541-548.
  • Biebl H, Zeng AP, Menzel K, Deckwer WD (1998) Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumonia. Appl Microbiol Biotechnol 50: 24-29.
  • Bielec D, Modrzewska R (2007) A history of botulin toxin diseases - clinical aspects. Epidemiologic Rev 61: 505-512 (in Polish).
  • Bigalke H, Shoer LF (2000) 'Clostridial neurotoxins' in Bacterial Protein Toxins In Handbook of Experimental Pharmacology, Aktories K, Just I eds. 145: 407-443. Springer-Verlag, Berlin.
  • Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19: 210-217.
  • Brin MF (1997) Botulinum toxin: chemistry, pharmacology, toxicity, and immunology. Muscle Nerve Suppl 6: S146-168.
  • Buckel W (2005) Special 'Clostridial enzymes and fermentation pathways' In Handbook on Clostridia, p 81. CRC Press LLC, Boca Raton.
  • Caya JG, Agni R, Miller JE (2004) Clostridium botulinum and the clinical laboratorian: a detailed review of botulism, including biological warfare ramifications of botulinum toxin. Arch Pathol Lab Med 128: 653-662.
  • Celińska E (2010) Debottlenecking the 1,3-propanediol pathway by metabolic engineering. Biotechnol Adv 28: 519-530.
  • Chen JS, Hiu SF (1986) Acetone-butanol-isopropanol production by Clostridium beijerinckii (synonym Clostridium butylicum). Biotechnol Lett 8: 371-376.
  • Chen WM, Tseng ZJ, Lee KS, Hang JS (2005) Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int J Hydrogen Energy 30: 1063-1070.
  • Cherington M (1998) Clinical spectrum of botulism. Muscle Nerve 21: 701-710.
  • Chin HL, Chen ZS, Chou CP (2003) Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production. Biotechnol Prog 19: 383-388.
  • Clarke DJ, Robson RM, Morris JG (1975) Purification of two Clostridium bacteriocins by procedures appropriate to hydrophobic proteins. Antimicrob Agents Chemother 7: 256-264.
  • Colhado OC, Boeing M, Ortega LB (2009) Toxina botulínica no tratamento da dor. Botulinum toxin in pain treatment. Rev Bras Anestesiol 59: 366-381.
  • Dabrock B, Bahl H, Gottschalk G (1992) Parameters affecting solvent production by Clostridium pasteurianum. Appl Environ Microbiol 58: 1233-1239.
  • Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energ Convers Manage 42: 1357-1378.
  • Dressler D (2000) Botulinum toxin therapy, pp 64-67. Theme-Verlag, Stuttgard.
  • Drożdżyńska A, Leja K, Czaczyk K (2011) Biotechnological production of 1,3-propanediol from crude glycerol. J Biotechnol Comput Biol Bionanotechnol 92: 92-100.
  • Dürre P (2001) From Pandora's Box to Cornucopia: Clostridia - A Historical Perspective in Clostridia: biotechnology and medical applications, Bahl H, Dürre P eds, pp 1-6; 20-22. Wiley-VCH Verlag GmbH, Germany.
  • Eklund FT, Poysky LM, Mseitif T, Strom MT (1988) Evidence for plasmid-mediated toxin and bacteriocin production in Clostridium botulinum Type G. Appl Environ Microbiol 54: 1405-1408.
  • Ezeji TC, Qureshi N, Blaschek HP (2003) Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J Microbiol Biotechnol 19: 595-603.
  • Friedman A, Potulska A (2001) Quantitative assessment of parkinsonian sialorrhea and results of treatment with botulinum toxin. Parkinsonism Relat D 7: 329-332.
  • George HA, Johnson JL, Moore WE, Holdeman LV, Chen JS (1983) Acetone, isopropanol and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum. Appl Environ Microbiol 45: 1160-1163.
  • Glass GE, Hussain M, Fleming AN, Powell BW (2009) Atrophy of the intrinsic musculature of the hands associated with the use of botulinum toxin-A injections for hyperhidrosis: a case report and review of the literature. J Plast Reconstr Aesthet Surg 62: e274-e276.
  • Gottumukkala LD, Parameswaran B, Valappil SK, Mathiyazhakan K, Pandey A, Sukumaran RK (2013) Biobutanol production from rice straw by a non acetone producing Clostridium sporogenes BE01. Bioresour Technol 145: 182-187.
  • Graham HK, Aoki KR, Autti-Rämö I, Boyd RN, Delgado MR, Gaebler-Spira DJ, Gormley ME, Guyer BM, Heinen F, Holton AF, Matthews D, Molenaers G, Motta F, García Ruiz PJ, Wissel J (2000) Recommendations for the use of botulinum toxin type A in the management of cerebral palsy. Gait Posture 11: 67-79.
  • Hao J, Wang W, Tian J, Li J, Liu D (2008) Decrease of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol production by over-expressing dhaT gene in Klebsiella pneumonia TUAC01. J Ind Microbiol Biotechnol 35: 735-741.
  • Harris LM, Desai RP, Welker NE, Papoutsakis ET (1999) Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: Need for new phenomenological models for solventogenesis and butanol inhibition. Biotechnol Bioeng 67: 1-11.
  • Heyndrickx, M, De Vos P, Vancanneyt M, De Ley J (1991) The fermentation of glycerol by Clostridium butyricum LMG 1212 t2 and 1213 t1, and C. pasteurianum LMG 3285. Appl Microbiol Biotechnol 34: 637-642.
  • Igari S, Mori S, Takikawa Y (2000) Effects of molecular structure of aliphatic diols and polyalkylene glycol as lubricants on the wear of aluminum. Wear 244: 180-184.
  • Jagoda A, Renner G (1990) Infant botulism: Case report and clinical update. Am J Emerg Med 8: 318-320.
  • Jankovic J, Hallet M (1994) Therapy with botulinum toxin. Marcel Dekker, Inc, New York.
  • Jaspers GW, Pijpe J, Jansma J (2011) The use of botulinum toxin type A in cosmetic facial procedures. Int J Oral Max Surg 40: 127-133.
  • Jiang L, Wang J, Liang S, Wang X, Cen P, Xu Z (2009) Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Bioresour Technol 100: 3403-3409.
  • Johns AT (1952) The mechanism of propionic acid formation by Clostridium propionicum. J Gen Microbiol 6: 123-127.
  • Johnson EA, Bradshaw M (2001) Clostridium botulinum and its neurotoxin: a metabolic and cellular perspective. Toxicon 39: 1703-1722.
  • Johnson JL, Toth J, Santiwatanakul S, Chen JS (1997) Cultures of Clostridium acetobutylicum from various collections comprise Clostridium acetobutylcium, Clostridium beijerinckii and two other distinct types based on DNA-DNA reassociation. Int J Syst Bacteriol 47: 420-424.
  • Jones DL (1998) Organic acids in the rhizosphere - a critical review. Plant Soil 205: 25-44.
  • Jones DT, van der Westhuizen A, Long S, Allcock ER, Reid SJ, Woods DR (1982) Solvent production and morphological changes in Clostridium acetobutylicum. Appl Environ Microbiol 43: 1434-1439.
  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50: 484-524.
  • Kasap M (2002) Nitrogen metabolism and solvent production in Clostridium beijerinckii NRRL B593. Ph.D. dissertation. Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
  • Keis S, Shaheen R, Jones DT (2001) Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int J Syst Evol Micr 51: 2095-2103.
  • Khanal SM, Chen WH, Sung S (2004) Biological hydrogen production: effects of pH and intermediate products. Int J Hydrogen Energy 29: 1123-1131.
  • Kośmider A, Drożdżyńska A, Blaszka K, Leja K, Czaczyk K (2010) Propionic acid production by Propionibacterium freudenreichii ssp. shermanii using industrial wastes: crude glycerol and whey lactose. Polish J of Environ Stud 19: 1249-1253.
  • Kreyden OP, Geiges ML, Boni R, Burg G (2000) Botulinum toxin: from poison to medicine. A historical review. Hautarzt 51: 733-737.
  • Ksibi I, Godard AL, Azouvi P, Denys P, Dziri C (2009) Botulinum toxin and refractory non-neurogenic overactive detrusor. Ann Phys Rehabil Med 52: 668-683.
  • Kubiak P, Leja K, Myszka K, Celińska E, Spychała M, Szymanowska-Powałowska D, Czaczyk K, Grajek W (2012) Physiological predisposition of various Clostridium species to synthetize 1,3-propanediol from glycerol. Process Biochem 47: 1308-1319.
  • Lanigan GW (1959) Studies on the pectinolytic anaerobes Clostridium flavum and Clostridium laniganii. J Bacteriol 77: 1-9.
  • Lehouritis P, Springer C, Tangney M (2013) Bacterial-directed enzyme prodrug therapy. J Control Release 170: 120-131.
  • Leja K, Czaczyk K, Myszka K (2011) The use of microorganisms in 1,3-propanediol production. African J Microbiology Res 5: 4652-4658.
  • Levin BD, Islam R, Cicek N, Sparling R (2006) Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int J Hydrogen Energy 31: 1496-1503.
  • Liu X, Zhu Y, Yang ST (2006) Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants. Enzyme Microb Technol 38: 521-528.
  • Lo YC, Lu WC, Chen CY, Chang JS (2010) Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5. Bioresour Technol 101: 5885-5891.
  • Luers F, Seyfried M, Daniel R, Gottschalk G (1997) Glycerol conversion by glycerol fermentation by Clostridium pasteurianum: cloning and expression of the gene encoding 1,3-propanediol dehydrogenase. FEMS Microbiol Lett 154: 337-345.
  • Mahajan ST, Brubaker L (2007) Botulinum toxin: from life-threatening disease to novel medical therapy. Am J Obstet Gynecol 196: 7-15.
  • Majid OW (2010) Clinical use of botulinum toxins in oral and maxillofacial surgery. Int J Oral Max Surg 39: 197-207.
  • Masset J, Hiligsmann S, Hamiltoa Ch, Beckers L, Franck F, Thonart P (2010) Effect of pH on glucose and starch fermentation in batch and sequenced-batch mode with a recently isolated strain of hydrogen-producing Clostridium butyricum CWBI1009. Int J Hydrogen Energy 35: 3371-3378.
  • Mayr E (1969) Principles of systematic zoology. McGraw-Hill, New York.
  • McKendry P (2002a) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83: 37-46.
  • McKendry P (2002 b) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83: 47-54.
  • Mellaert L, Barbé S, Anne J (2006) Clostridium spores as anti-tumour agents. Trends Microbiol 14: 190-196.
  • Minton NP, Mauchline ML, Lemmon MJ, Brehm JK, Fox M, Michael NP, Giaccia A, Brown JM (1995) Chemotherapeutic tumour targeting using clostridial spores. FEMS Microbiol Rev 17: 357-364.
  • Moriishi K, Koura M, Abe N, Fujii N, Fujinaga Y, Inoue K, Ogumad K (1996) Mosaic structures of neurotoxins produced from Clostridium botulinum strain NCTC 2916. FEMS Microbiol Lett 140: 151-158.
  • Mu Y, Teng H, Zhang DJ, Wang W, Xiu ZL (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol Lett 28: 1755-1759.
  • Nakamura CE, Whited G (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotech 14: 454-459.
  • Nakamura Y, Miyafuji H, Kawamoto H, Saka S (2011) Acetic acid fermentability with Clostridium thermoaceticum and Clostridium thermocellum of standard compounds found in beech wood as produced in hot-compressed water. J Wood Sci 57: 331-337.
  • Nigel P, Minton J, Brown M, Lambin P, Anne J (2001) Clostridia in Cancer Therapy In Clostridia: biotechnology and medical applications, Bahl H, Dürre P eds, pp. 251-265 Wiley-VCH Verlag GmbH, Germany.
  • Oh SE, Zuo Y, Zhang H, Guiltinan MJ, Logan BE, Regan JM (2009) Hydrogen production by Clostridium acetobutylicum ATCC 824 and megaplasmid-deficient mutant M5 evaluated using a large headspace volume technique. Int J Hydrogen Energy 34: 9347-9353.
  • Qureshi N, Schripsema J, Lienhardt J, Blaschek HP (2000) Continuous solvent production by Clostridium beijerinckii BA101 immobilized by adsorption onto brick. World J Microb Biot 16: 377-382.
  • Patyar S, Joshi R, Byrav DS, Prakash A, Medhi B, Das BK (2010) Bacteria in cancer therapy: a novel experimental strategy. J Biomed Sci 17: 21.
  • Ranade VV (1989) Drug delivery systems 1. Site-specific drug delivery using liposomes as carriers. J Cancer Pharmacol 29: 685-694.
  • Ren Z, Ward TE, Logan BE, Regan JM (2007) Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species. J Appl Microbiol 103: 2258-2266.
  • Rossetto O, Seveso M, Caccin P, Schiavo G, Montecucco C (2001) Tetanus and botulinum neurotoxins: turning bad guys into good by research. Toxicon 39: 27-41.
  • Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80: 717-766.
  • Shapiro RL, Hatheway C, Swerdlow DL (1998) Botulism in the United States: A Clinical and Epidemiologic Review. Ann Intern Med 129: 221-228.
  • Simpson LL (2000) Identification of the characteristics that underlie botulinum toxin potency: Implications for designing novel drugs. Biochimie 82: 943-953.
  • Skonieczny MT, Yargeau V (2009) Biohydrogen production by Clostridium beijerinckii: effect of pH and substrate concentration. Int J Hydrogen Energy 34: 3288-3294.
  • Skrivanova E, Marounek M, Benda V, Brezina P (2006) Susceptibility of Escherichia coli, Salmonella sp. and Clostridium perfringens to organic acids and monolaurin. Vet Med-Czech 51: 81-88.
  • Sobel J (2005) Botulism. Clin Infect Dis 41: 1167-1173.
  • Song JH, Ventura JRS, Lee ChH, Jahng D (2011) Butyric Acid Production from Brown Algae Using Clostridium tyrobutyricum ATCC 25755. Biotechnol Bioprocess Eng 16: 42-49.
  • St Jean AT, Zhang M, Forbes NS (2008) Bacterial therapies: completing the cancer treatment toolbox. Curr Opin Biotech 19: 511-517.
  • Sun Z, Liu S (2012) Production of n-butanol from concentrated sugar maple hemicellulosic hydrolysate by Clostridia acetobutylicum ATCC824. Biomass Bioenerg 39: 39-47.
  • Sutcliffe RP, Sandiford NA, Khawaja HT (2005) From frown lines to fissures: Therapeutic uses for botulinum toxin. Int J Surg 3: 141-146.
  • Tong-Long Lin A (2007) Basic pharmacology of botulinum toxin in the lower urinary tract. Tzu Chi Med J 19: 109-114.
  • Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotech 23: 364-381.
  • Tsui JK (1996) Botulinum toxin as a therapeutic agent. Pharmacol Ther 72: 13-24.
  • Wei MQ, Mengesha A, Good D, Anné J (2008) Bacterial targeted tumour therapy-dawn of a new era. Cancer Lett 259: 16-27.
  • Wheeler A, Smith HS (2013) Botulinum toxins: Mechanisms of action, antinociception and clinical applications. Toxicology 306: 124-146.
  • Wilkens E, Ringel AK, Hortig D, Willke T, Vorlop KD (2012) High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Appl Microbiol Biotechnol 93: 1057-1063.
  • Williams EA, Coxhead JM, Mathers JC (2003) Anti-cancer effects of butyrate: use of microarray technology to investigate mechanisms. Proc Nutr Soc 62: 107-115.
  • Wu Z, Yang SH (2003) Extractive fermentation for butyric acid production from glucose by Clostridium tyrobutyricum. Biotechnol Bioeng 82: 93-102.
  • Zhu Y, Wu Z, Yang ST (2002) Butyric acid production from acid hydrolysate of corn fibre by Clostridium tyrobutyricum in a fibrous-bed bioreactor. Process Biochem 38: 657-666.
  • Zigova J, Sturdik E, Dusan V, Schlosser S (1999) Butyric acid production by Clostridium butyricum with integrated extraction and pertraction. Process Biochem 34: 835-843.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv60p515kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.