Preferences help
enabled [disable] Abstract
Number of results
2013 | 60 | 3 | 277-284
Article title

Neutrophil extracellular traps (NETs) - formation and implications

Title variants
Languages of publication
Neutrophils are cells of the immune system which freely circulate in blood vessels and are recruited to the inflammation sites when the human organism responds to microbial infections. One of the mechanisms of neutrophil action is the formation of neutrophil extracellular traps (NETs) The process of NET generation, called netosis, is a specific type of cell death, different from necrosis and apoptosis. NETs are formed by neutrophils upon contact with various bacteria or fungi as well as with activated platelets or under the influence of numerous inflammatory stimuli, and this process is associated with dramatic changes in the morphology of the cells. The main components of NETs, DNA and granular antimicrobial proteins, determine their antimicrobial properties. The pathogens trapped in NETs are killed by oxidative and non-oxidative mechanisms. On the other hand, it was also discovered that chromatin and proteases released into the circulatory system during NET formation can regulate procoagulant and prothrombotic factors and take part in clot formation in blood vessels. NETs have also been detected in lungs where they are involved in chronic inflammation processes in ALI/ARDS patients. Moreover, DNA-proteins complexes have been found in the airway fluids of cystic fibrosis patients where they can increase the viscosity of the sputum and have a negative impact on the lung functions. The DNA-complexed granular proteins and other proteins released by neutrophils during netosis lead to autoimmunity syndromes such as systemic lupus erythematosus (SLE), small-vessel vasculitis (SVV) or autoimmune diseases associated with the formation of autoantibodies against chromatin and neutrophil components. A possible involvement of NETs in metastasis is also considered.
Physical description
  • Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
  • Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
  • Aarbiou J, Tjabringa GS, Verhoosel RM, Ninaber DK, White SR, Peltenburg LT, Rabe KF, Hiemstra PS (2006) Mechanisms of cell death induced by the neutrophil antimicrobial peptides alpha-defensins and LL-37. Inflamm Res 55: 119-127.
  • Acuff HB, Carter KJ, Fingleton B, Gorden DL, Matrisian LM (2006) Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Res 66: 259-266.
  • Beiter K, Wartha F, Albiger B, Normark S, Zychlinsky A, Henriques-Normark B (2006) An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr Biol 16: 401-407.
  • Berger-Achituv S, Brinkmann V, Abed UA, Kühn LI, Ben-Ezra J, Elhasid R, Zychlinsky A (2013) A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Immunol 4: 48.
  • Brill A, Fuchs T, Chauhan AK, Yang JJ, De Meyer SF, Köllnberger M, Wakefield T, Lämmle B, Massberg S, Wagner DD (2011) von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood 117: 1400-1407.
  • Brill A, Fuchs TA, Savchenko AS, Thomas GM, Martinod K, De Meyer SF, Bhandari AA, Wagner DD (2012) Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thrombosis Haemostasis 10: 136-144.
  • Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303: 1532-1535.
  • Brinkmann V, Zychlinsky A (2012) Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol 198: 773-783.
  • Von Brühl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, Khandoga A, Tirniceriu A, Coletti R, Köllnberger M et al (2012) Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 209: 819-835.
  • Cheng OZ, Palaniyar N (2013) NET balancing: a problem in inflammatory lung diseases. Front Immunol 4: 1.
  • Cho JH, Sung BH, Kim SC (2009) Buforins: histone H2A-derived antimicrobial peptides from toad stomach. Biochim Biophys Acta 1788: 1564-1569.
  • Crispín JC, Liossis SC, Kis-Toth K, Lieberman LA, Kyttaris VC, Juang Y, Tsokos GC (2010) Pathogenesis of human systemic lupus erythematosus: recent advances. Trends Mol Med 16: 47-57.
  • Darrah E, Andrade F (2012) NETs: the missing link between cell death and systemic autoimmune diseases? Front Immunol 3: 428.
  • Darrah E, Rosen A, Giles JT, Andrade F (2012) Peptidylarginine deiminase 2, 3, and 4 have distinct specificities against cellular substrates: novel insights into autoantigen selection in rheumatoid arthritis. Ann Rheum Dis 71: 92-98.
  • Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, Scadden DT, Wagner DD (2012) Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci USA 109: 13076-13081.
  • Demers M, Wagner DD (2013) Neutrophil extracellular traps: A new link to cancer-associated thrombosis and potential implications for tumor progression. Oncoimmunol 2: e22946.
  • Douda DN, Jackson R, Grasemann H, Palaniyar N (2011) Innate immune collectin surfactant protein D simultaneously binds both neutrophil extracellular traps and carbohydrate ligands and promotes bacterial trapping. J Immunol 187: 1856-1865.
  • Dubois AV, Gauthier A, Bréa D, Varaigne F, Diot P, Gauthier F, Attucci S (2012) Influence of DNA on the activities and inhibition of neutrophil serine proteases in cystic fibrosis sputum. Am J Respir Cell Mol Biol 47: 80-86.
  • Farnaud S, Evans RW (2003) Lactoferrin - a multifunctional protein with antimicrobial properties. Mol Immunol 40: 395-405.
  • Fuchs T, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176: 231-241.
  • Fuchs T, Bhandari A, Wagner DD (2011) Histones induce rapid and profound thrombocytopenia in mice. Blood 118: 3708-3714.
  • Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 107: 15880-15885.
  • Fuchs TA, Brill A, Wagner DD (2012) Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arteriosclerosis Thrombosis Vascular Biol 32: 1777-1783.
  • Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, Punaro M, Baisch J, Guiducci C, Coffman RL et al. (2011) Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Translat Med 3: 73ra20.
  • Goldmann O, Medina E (2013) The expanding world of extracellular traps: not only neutrophils but much more. Front Immunol 3: 420.
  • Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R (2011) Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20: 300-314.
  • Grommes J, Soehnlein O (2011) Contribution of neutrophils to acute lung injury. Mol Med 17: 293-307.
  • Guimarães-Costa AB, Nascimento MT, Wardini AB, Pinto-da-Silva LH, Saraiva EM (2012) ETosis: A Microbicidal Mechanism beyond Cell Death. J Parasitol Res 2012: 929743.
  • Gupta AK, Joshi MB, Philippova M, Erne P, Hasler P, Hahn S, Resink TJ (2010) Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett 584: 3193-3197.
  • Hamer JD, Malone PC, Silver IA (1981) The PO2 in venous valve pockets: its possible bearing on thrombogenesis. Br J Surg 68: 166-170.
  • Henke MO, Ratjen F (2007) Mucolytics in cystic fibrosis. Paediatric Respiratory Rev 8: 24-29.
  • Huh SJ, Liang S, Sharma A, Dong C, Robertson GP (2010) Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res 70: 6071-6082.
  • Kallenberg CG, Heeringa P, Stegeman C (2006) Mechanisms of Disease: pathogenesis and treatment of ANCA-associated vasculitides. Nature Clin Practice. Rheumatology 2: 661-670.
  • Kambas K, Markiewski MM, Pneumatikos IA, Rafail SS, Theodorou V, Konstantonis D, Kourtzelis I, Doumas MN, Magotti P, Deangelis RA et al (2008) C5a and TNF-alpha up-regulate the expression of tissue factor in intra-alveolar neutrophils of patients with the acute respiratory distress syndrome. J Immunol 180: 7368-7375.
  • Kambas K, Mitroulis I, Ritis K (2012) The emerging role of neutrophils in thrombosis- the journey of TF through NETs. Front Immunol 3: 385.
  • Kasama T, Miwa Y, Isozaki T, Odai T, Adachi M, Kunkel SL (2005) Neutrophil-derived cytokines: potential therapeutic targets in inflammation. Curr Drug Targets Inflamm Allergy 4: 273-279.
  • Kaynar M, Shapiro SD (2010) NET loss of air in cystic fibrosis. Nature Med 16: 967-969.
  • Kessenbrock K, Krumbholz M, Schönermarck U, Back W, Gross WL, Werb Z, Gröne H, Brinkmann V, Jenne DE (2009) Netting neutrophils in autoimmune small-vessel vasculitis. Nature Med 15: 623-625.
  • Knight JS, Carmona-Rivera C, Kaplan MJ (2012) Proteins derived from neutrophil extracellular traps may serve as self-antigens and mediate organ damage in autoimmune diseases. Front Immunol 3: 380.
  • Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13: 159-175.
  • Kowanetz M, Wu X, Lee J, Tan M, Hagenbeek T, Qu X, Yu L, Ross J, Korsisaari N, Cao T et al. (2010) Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+granulocytes. Proc Natl Acad Sci USA 107: 21248-21255.
  • Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, Meller S, Chamilos G, Sebasigari R, Riccieri V et al. (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Translational Med 3: 73ra19.
  • Leffler J, Martin M, Gullstrand B, Tydén H, Lood C, Truedsson L, Bengtsson AA, Blom AM (2012) Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J Immunol 188: 3522-3531.
  • Leshner M, Wang S, Lewis C, Zheng H, Chen XA, Santy L, Wang Y (2012) PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol 3: 307.
  • Li P, Li M, Lindberg M. R, Kennett M. J, Xiong N, Wang Y (2010) PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 207: 1853-1862.
  • Line BR (2001) Pathophysiology and diagnosis of deep venous thrombosis. Seminars Nuclear Med 31: 90-101.
  • Liu CL, Tangsombatvisit S, Rosenberg JM, Mandelbaum G, Gillespie EC, Gozani OP, Alizadeh A, Utz PJ (2012) Specific post-translational histone modifications of neutrophil extracellular traps as immunogens and potential targets of lupus autoantibodies. Arthritis Res Therapy 14: R25.
  • Lu T, Kobayashi SD, Quinn MT, Deleo FR (2012) A NET Outcome. Front Immunol 3: 365.
  • Ma AC, Kubes P (2008) Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J Thrombosis Haemostasis 6: 415-420.
  • Marcos V, Zhou Z, Yildirim AO, Bohla A, Hector A, Vitkov L, Wiedenbauer EM, Krautgartner WD, Stoiber W, Belohradsky BH et al (2010) CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation. Nature Med 16: 1018-1023.
  • Masson V, De la Ballina LR, Munaut C, Wielockx B, Jost M, Maillard C, Blacher S, Bajou K, Itoh T, Itohara S et al. (2005) Contribution of host MMP-2 and MMP-9 to promote tumor vascularization and invasion of malignant keratinocytes. FASEB J 19: 234-236.
  • Méndez-Samperio P (2010) The human cathelicidin hCAP18/LL-37: a multifunctional peptide involved in mycobacterial infections. Peptides 31: 1791-1798.
  • Metzler KD, Fuchs T, Nauseef WM, Reumaux D, Roesler J, Schulze I, Wahn V, Papayannopoulos V, Zychlinsky A (2011) Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood 117: 953-959.
  • Nayak A, Dodagatta-Marri E, Tsolaki AG, Kishore U (2012) An Insight into the Diverse Roles of Surfactant Proteins SP-A and SP-D in Innate and Adaptive Immunity. Front Immunol 3: 131.
  • Neeli I, Khan SN, Radic M (2008) Histone deimination as a response to inflammatory stimuli in neutrophils. J Immunol 180: 1895-1902.
  • Neeli I, Radic M (2013) Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release. Front Immunol 4: 38.
  • Nishinaka Y, Arai T, Adachi S, Takaori-Kondo A, Yamashita K (2011) Singlet oxygen is essential for neutrophil extracellular trap formation. Biochem Biophys Res Commun 413: 75-79.
  • Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191: 677-691.
  • Papayannopoulos V, Staab D, Zychlinsky A (2011) Neutrophil elastase enhances sputum solubilization in cystic fibrosis patients receiving DNase therapy. PloS One 6: e28526.
  • Papayannopoulos V, Zychlinsky A (2009) NETs: a new strategy for using old weapons. Trends Immunol 30: 513-521.
  • Parker H, Winterbourn CC (2012) Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps. Front Immunol 3: 424.
  • Pilsczek FH, Salina D, Poon KKH, Fahey C, Yipp BG, Sibley CD, Robbins SM, Green FHY, Surette MG, Sugai M et al. (2010) A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol 185: 7413-7425.
  • Ratjen F, Grasemann H (2012) New therapies in cystic fibrosis. Curr Pharmaceutical Design 18: 614-627.
  • Saffarzadeh M, Juenemann C, Queisser M, Lochnit G, Barreto G, Galuska SP, Lohmeyer J, Preissner KT (2012) Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PloS One 7: e32366.
  • Sangaletti S, Tripodo C, Chiodoni C, Guarnotta C, Cappetti B, Casalini P, Piconese S, Parenza M, Guiducci C, Vitali C et al. (2012) Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood 120: 3007-3018.
  • Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, Esmon CT (2011) Extracellular histones promote thrombin generation through platelet- dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 118: 1952-1961.
  • Si-Tahar M, Pidard D, Balloy V, Moniatte M, Kieffer N, Van Dorsselaer A, Chignard M (1997) Human neutrophil elastase proteolytically activates the platelet integrin alphaIIbbeta3 through cleavage of the carboxyl terminus of the alphaIIb subunit heavy chain. Involvement in the potentiation of platelet aggregation. J Biol Chem 272: 11636-11647.
  • Souto JC, Vila L, Brú A (2011) Polymorphonuclear neutrophils and cancer: intense and sustained neutrophilia as a treatment against solid tumors. Med Res Rev 31: 311-363.
  • Steppich B, Seitz I, Busch G, Stein A, Ott I (2008) Modulation of tissue factor and tissue factor pathway inhibitor-1 by neutrophil proteases. Thrombosis Haemostasis 100: 1068-1075.
  • Tsokos GC (2011) Systemic lupus erythematosus. New England J Med 365: 2110-2121.
  • Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, Brinkmann V, Jungblut PR, Zychlinsky A (2009) Neutrophil extracellular traps contain calprotectin a cytosolic protein complex involved in host defence against Candida albicans. PLoS Pathogens 5: e1000639.
  • Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L, Han H, Grigoryev S et al. (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184: 205-213.
  • Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. New England J Med 342: 1334-1349.
  • Wartha F, Beiter K, Normark S, Henriques-Normark B (2007) Neutrophil extracellular traps: casting the NET over pathogenesis. Curr Opin Microbiol 10: 52-56.
  • Wolberg AS, Aleman MM, Leiderman K, Machlus KR (2012) Procoagulant activity in hemostasis and thrombosis: Virchow's triad revisited. Anesthesia Analgesia 114: 275-285.
  • Yipp BG, Petri B, Salina D, Jenne CN, Scott BNV, Zbytnuik LD, Pittman K, Asaduzzaman M, Wu K, Meijndert HC et al. (2012) Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 18: 1386-1393.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.