PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 59 | 3 | 401-406
Article title

Bacterial putative metacaspase structure from Geobacter sulfureducens as a template for homology modeling of type II Triticum aestivum metacaspase (TaeMCAII)

Content
Title variants
Languages of publication
EN
Abstracts
EN
Metacaspases, cysteine proteases belonging to the peptidase C14 family, are suspected of being involved in the programmed cell death of plants, although their sequences and substrate specificity differ from those of animal caspases. At present, the knowledge on the metacaspase reaction mechanism is based only on biochemical data and homology models constructed on caspase templates. Here we propose a novel template for metacaspase modeling and demonstrate important advantages in comparison to the conventionally used caspase templates. We also point out the connection between plant and bacterial metacaspases, underlining the prokaryotic roots of Programmed Cell Death (PCD).
Publisher

Year
Volume
59
Issue
3
Pages
401-406
Physical description
Dates
published
2012
received
2012-04-10
accepted
2012-06-27
revised
2012-08-24
(unknown)
2012-08-27
Contributors
  • Department of Biometrics and Bioinformatics, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
author
  • Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
References
  • Aravind L, Koonin E (2002) Classification of the caspase-hemoglobinase fold: detection of new families and implications for the origin of the eukaryotic separins. Proteins 46: 355-367.
  • Belenghi B, del Carmen Romero-Puertas M, Vercammen D, Brackenier A, Inze D, Delledonne M, Van Breusegem F (2007) Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue. J Biol Chem 282: 1352-1358.
  • Bonneau L, Ge Y, Drury GE, Gallois P (2008) What happened to plant caspases? J Exp Bot 59: 491-499.
  • Bozhkov PV, Suarez MF, Filonova LH, Daniel G, Zamyatnin AA, Rodriguez-Nieto S, Zhivotovsky B, Smertenko A (2005) Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proc Natl Acad Sci USA 102: 14463-14468.
  • Collazo C, Chacon O, Borras O (2006) Programmed cell death in plants resembles apoptosis of animals. Biotecnologia Aplicada 23: 1-10.
  • Domsalla A, Melzig MF (2008) Occurrence and properties of proteases in plant latice Planta Med 74: 699-711.
  • Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Ann Rev Biochem 68: 383-424.
  • Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen M, Pieper U, Sali A (2006) Comparative protein structure modeling with MODELLER. Curr Protoc Bioinformatics 5: Unit 5.6.
  • Jaroszewski L, Rychlewski L, Li Z, Li W, Godzik A (2005) FFAS03: a server for profile-profile sequence alignments. Nucl Acids Res 33: W284-W288.
  • Kaufmann SC, Hengartner MO (2001) Programmed cell death: alive and well in the new millennium. Trends Cell Biol 11: 526-534.
  • Kurowski MA, Bujnicki JM (2003) GeneSilico protein structure prediction meta-server Nucleic Acids Res 31: 3305-3307.
  • Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121: 567-577.
  • McLuskey K, Rudolf J, Proto WR, Isaacs NW, Coombs GH, Moss CX, Mottram JC (2012) Crystal structure of a Trypanosoma brucei metacaspase. Proc Natl Acad Sci 109: 7469-7474.
  • Pawłowski M, Gajda M, Matlak R, Bujnicki JM (2008) MetaMQAP: A meta-server for the quality assessment of protein models BMC Bioinformatics 9: 403.
  • Piszczek E, Dudkiewicz M, Mielecki M (2012) Biochemical and bioinformatic characterization of type II metacaspase protein (TaeMCAII) from wheat. Plant Mol Biol Rep (in press) DOI: 101007/s11105-012-0450-6.
  • Piszczek E, Dudkiewicz M, Sobczak M (2011) Molecular cloning and phylogenetic analysis of cereal type II metacaspase cDNA from wheat (Triticum aestivum). Biol Plant 55: 614-624.
  • Rychlewski L, Jaroszewski L, Li W, Godzik A (2000) Comparison of sequence profiles Strategies for structural predictions using sequence information. Protein Sci 9: 232-241
  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234: 779-815.
  • Uren AG, O'Rourke K, Aravind L, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins one of which plays a key role in MALT lymphoma. Mol Cell 6: 961-967.
  • Vercammen D, Belenghi B, van de Cotte B, Beunens T, Gavigan JA, de Rycke R, Brackenier A, Inze D, Harris JL, van Breusegem F (2006) Serpin1 of Arabidopsis thaliana is a suicide inhibitor for metacaspase 9. J Mol Biol 364: 625-636.
  • Vercammen D, van de Cotte B, De Jaeger G, Eeckhout D, Casteels P, Vandepoele K, Vandenberghe I, Van Beeumen J, Inze D, Van Breusegem F (2004) Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J Biol Chem 279: 45329-45336.
  • Yarmolinsky MB (1995) Programmed cell death in bacterial populations. Science 267: 836-837.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv59p401kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.