Preferences help
enabled [disable] Abstract
Number of results
2011 | 58 | 3 | 413-419
Article title

Subcellular localization of UDP-GlcNAc, UDP-Gal and SLC35B4 transporters

Title variants
Languages of publication
The mechanisms of transport and distribution of nucleotide sugars in the cell remain unclear. In an attempt to further characterize nucleotide sugar transporters (NSTs), we determined the subcellular localization of overexpressed epitope-tagged canine UDP-GlcNAc transporter, human UDP-Gal transporter splice variants (UGT1 and UGT2), and human SLC35B4 transporter splice variants (longer and shorter version) by indirect immunofluorescence using an experimental model of MDCK wild-type and MDCK-RCAr mutant cells. Our studies confirmed that the UDP-GlcNAc transporter was localized to the Golgi apparatus only and its localization was independent of the presence of endogenous UDP-Gal transporter. After overexpression of UGT1, the protein colocalized with the Golgi marker only. When UGT2 was overexpressed, the protein colocalized with the endoplasmic reticulum (ER) marker only. When UGT1 and UGT2 were overexpressed in parallel, UGT1 colocalized with the ER and Golgi markers and UGT2 with the ER marker only. This suggests that localization of the UDP-Gal transporter may depend on the presence of the partner splice variant. Our data suggest that proteins involved in nucleotide sugar transport may form heterodimeric complexes in the membrane, exhibiting different localization which depends on interacting protein partners. In contrast to previously published data, both splice variants of the SLC35B4 transporter were localized to the ER, independently of the presence of endogenous UDP-Gal transporter.
Physical description
  • Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
  • Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
  • Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
  • Abeijon C, Robbins PW, Hirschberg CB (1996) Molecular cloning of the Golgi apparatus uridine diphosphate-N-acetylglucosamine transporter from Kluyveromyces lactis. Proc Natl Acad Sci USA 93: 5963-5968.
  • Andersson H, Kappeler F, Hauri HP (1999) Protein targeting to endoplasmic reticulum by dilysine signals involves direct retention in addition to retrieval. J Biol Chem 274: 15080-15084.
  • Ashikov A, Routier F, Fuhlrott J, Helmus Y, Wild M, Gerardy-Schahn R, Bakker H (2005) The human solute carrier gene SLC35B4 encodes a bifunctional nucleotide sugar transporter with specificity for UDP-xylose and UDP-N-acetylglucosamine. J Biol Chem 280: 27230-27235.
  • Balch WE, Dunphy WG, Braell WA, Rothman JE (1984) Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell 39: 405-416.
  • Berninsone PM, Hwang HY, Zemtseva I, Horvitz HR, Hirschberg CB (2001) SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N-acetylgalactosamine, and UDP-galactose. Proc Natl Acad Sci USA 98: 3738-3743.
  • Brandli AW, Hansson GC, Rodriguez-Boulan E, Simons K (1988) A polarized epithelial cell mutant deficient in translocation of UDP-galactose into the Golgi complex. J Biol Chem 263: 16283-16290.
  • Cipollo JF, Awad AM, Costello CE, Hirschberg CB (2004) srf-3, a mutant of Caenorhabditis elegans, resistant to bacterial infection and to biofilm binding, is deficient in glycoconjugates. J Biol Chem 279: 52893-528903.
  • Coates S, Gurney T, Sommers LW, Yeh M, Hirschberg CB (1980) Subcellular localization of sugar nucleotide synthetases. J Biol Chem 255: 9225-9229.
  • Eckhardt M, Gotza B, Gerardy-Schahn R (1999) Membrane topology of the mammalian CMP-sialic acid transporter. J Biol Chem 274: 8779-8787.
  • Gao XD, Dean N (2000) Distinct protein domains of the yeast Golgi GDP-mannose transporter mediate oligomer assembly and export from the endoplasmic reticulum. J Biol Chem 275: 17718-17727.
  • Gerardy-Schahn R, Oelmann S, Bakker H (2001) Nucleotide sugar transporters: biological and functional aspects. Biochimie 83: 775-782.
  • Guillen E, Abeijon C, Hirschberg CB (1998) Mammalian Golgi apparatus UDP-N-acetylglucosamine transporter: molecular cloning by phenotypic correction of a yeast mutant. Proc Natl Acad Sci USA 95: 7888-7892.
  • Hara T, Endo T, Furukawa K, Kawakita M, Kobata A (1989) Elucidation of the phenotypic change on the surface of Had-1 cell, a mutant cell line of mouse FM3A carcinoma cells selected by resistance to Newcastle disease virus infection. J Biochem 106: 236-247.
  • Hirschberg CB, Robbins P, Abeijon C (1998) Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem 67: 49-69.
  • Hong K, Ma D, Beverley SM, Turco SJ (2000) The Leishmania GDP-mannose transporter is an autonomous, multi-specific, hexameric complex of LPG2 subunits. Biochemistry 39: 2013-2022.
  • Ishida N, Miura N, Yoshioka S, Kawakita M (1996) Molecular cloning and characterization of a novel isoform of the human UDP-galactose transporter, and of related complementary DNAs belonging to the nucleotide-sugar transporter gene family. J Biochem (Tokyo) 120: 1074-1078.
  • Ishida N, Yoshioka S, Chiba Y, Takeuchi M, Kawakita M (1999a) Molecular cloning and functional expression of the human Golgi UDP-N-acetylglucosamine transporter. J Biochem (Tokyo) 126: 68-77.
  • Ishida N, Yoshioka S, Iida M, Sudo K, Miura N, Aoki K, Kawakita M (1999b) Indispensability of transmembrane domains of Golgi UDP-galactose transporter as revealed by analysis of genetic defects in UDP-galactose transporter-deficient murine had-1 mutant cell lines and construction of deletion mutants. J Biochem (Tokyo) 126: 1107-1117.
  • Ishikawa HO, Ayukawa T, Nakayama M, Higashi S, Kamiyama S, Nishihara S, Aoki K, Ishida N, Sanai Y, Matsuno K (2010) Two pathways for importing GDP-fucose into the endoplasmic reticulum lumen function redundantly in the O-fucosylation of Notch in Drosophila. J Biol Chem 285: 4122-4129.
  • Itin C, Kappeler F, Linstedt AD, Hauri HP (1995) A novel endocytosis signal related to the KKXX ER-retrieval signal. EMBO J 14: 2250-2256.
  • Kabuss R, Ashikov A, Oelmann S, Gerardy-Schahn R, Bakker H (2005) Endoplasmic reticulum retention of the large splice variant of UDP-galactose transporter is caused by a dilysine motif. Glycobiology 15: 905-911.
  • Kobayashi T, Sleeman JE, Coughtrie MW, Burchell B (2006) Molecular and functional characterization of microsomal UDP-glucuronic acid uptake by members of the nucleotide sugar transporter (NST) family. Biochem J 400: 281-289.
  • Maszczak-Seneczko D, Olczak T, Wunderlich L, Olczak M (2011) Comparative analysis of involvement of UGT1 and UGT2 splice variants of UDP-galactose transporter in glycosylation of macromolecules in MDCK and CHO cell lines. Glycoconj J DOI: 10.1007/s10719-011-9348-z.
  • Miura N, Ishida N, Hoshino M, Yamauchi M, Hara T, Ayusawa D, Kawakita M (1996) Human UDP-galactose translocator: molecular cloning of a complementary DNA that complements the genetic defect of a mutant cell line deficient in UDP-galactose translocator. J Biochem (Tokyo) 120: 236-241.
  • Munster AK, Eckhardt M, Potvin B, Muhlenhoff M, Stanley P, Gerady-Schahn R (1998) Mammalian cytidine 5'-monophosphate N-acetylneuraminic acid synthetase: a nuclear protein with evolutionarily conserved structural motifs. Proc Natl Acad Sci USA 95: 9140-9145.
  • Muraoka M, Kawakita M, Ishida N (2001) Molecular characterization of human UDP-glucuronic acid/UDP-N-acetylgalactosamine transporter, a novel nucleotide sugar transporter with dual substrate specificity. FEBS Lett 495: 87-93.
  • Nakanishi H, Nakayama K, Yokota A, Tachikawa H, Takahashi N, Jigami Y (2001) Hut1 proteins identified in Saccharomyces cerevisiae and Schizosaccharomyces pombe are functional homologues involved in the protein folding process at the endoplasmic reticulum. Yeast 18: 543-554.
  • Oelmann S, Stanley P, Gerardy-Schahn R (2001) Point mutations identified in Lec8 Chinese hamster ovary glycosylation mutants that inactivate both the UDP-galactose and CMP-sialic acid transporters. J Biol Chem 276: 26291-26300.
  • Olczak M, Guillen E (2006) Characterization of a mutation and an alternative splicing of UDP-galactose transporter in MDCK-RCAr mutant cell line. Biochim Biophys Acta 1763: 82-92.
  • Puglielli L, Hirschberg CB (1999) Reconstitution, identification, and purification of the rat liver Golgi membrane GDP-fucose transporter. J Biol Chem 274: 35596-35600.
  • Puglielli L, Mandon EC, Rancour DM, Menon AK, Hirschberg CB (1999) Identification and purification of the rat liver Golgi membrane UDP-N-acetylgalactosamine transporter. J Biol Chem 274: 4474-4479.
  • Roy S, Chiba Y, Takeuchi M, Jigami Y (2000) Characterization of yeast Yea4p, a uridine diphosphate-N-acetylglucosamine transporter localized in the endoplasmic reticulum and required for chitin synthesis. J Biol Chem 275: 13580-13587.
  • Sprong H, Kruithof B, Leijendekker R, Slot JW, van Meer G, van der Sluijs P (1998) UDP-galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J Biol Chem 273: 25880-25888.
  • Sprong H, Degroote S, Nilsson T, Kawakita M, Ishida N, van der Sluijs P, van Meer G (2003) Association of the Golgi UDP-galactose transporter with UDP-galactose:ceramide galactosyltransferase allows UDP-galactose import in the endoplasmic reticulum. Mol Biol Cell 14: 3482-3493.
  • Stanley P (1983) Lectin-resistant CHO cells: selection of new mutant phenotypes. Somatic Cell Genet 9: 593-608.
  • Stanley P (1989) Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. Mol Cell Biol 9: 377-383.
  • Sturla L, Puglielli L, Tonetti M, Berninsone P, Hirschberg CB, De Flora A, Etzioni A (2001) Impairment of the Golgi GDP-l-fucose transport and unresponsiveness to fucose replacement therapy in LAD II patients. Pediatr Res 49: 537-542.
  • Suda T, Kamiyama S, Suzuki M, Kikuchi N, Nakayama K, Narimatsu H, Jigami Y, Aoki T, Nishihara S (2004) Molecular cloning and characterization of a human multisubstrate specific nucleotide-sugar transporter homologous to Drosophila fringe connection. J Biol Chem 279: 26469-26474.
  • Sun-Wada GH, Yoshioka S, Ishida N, Kawakita M (1998) Functional expression of the human UDP-galactose transporters in the yeast Saccharomyces cerevisiae. J Biochem (Tokyo) 123: 912-917.
  • Thomsen B, Horn P, Panitz F, Bendixen E, Petersen AH, Holm LE, Nielsen VH, Agerholm JS, Arnbjerg JS, Bendixen C (2006) A missense mutation in the bovine SLC35A3 gene, encoding a UDP-N-acetylglucosamine transporter, causes complex vertebral malformation. Genome Research 16: 97-105.
  • Toma L, Pinhal MA, Dietrich CP, Nader HB, Hirschberg CB (1996) Transport of UDP-galactose into the Golgi lumen regulates the biosynthesis of proteoglycans. J Biol Chem 271: 3897-3901.
  • Yoshioka S, Sun-Wada GH, Ishida N, Kawakita M (1997) Expression of the human UDP-galactose transporter in the Golgi membranes of murine Had-1 cells that lack the endogenous transporter. J Biochem (Tokyo) 122: 691-695.
  • Zerangue C, Fan JY, Guhl B, Parodi A, Fessler JH, Parker C, Roth J (2001) Immunolocalization of UDP-glucose:glycoprotein glucosyltransferase indicates involvement of pre-Golgi intermediates in protein quality control. Proc Natl Acad Sci USA 98: 10710-10715.
  • Zhao W, Chen T-LL, Vertel BM, Colley KJ (2006) The CMP-sialic acid transporter is localized in the medial-trans Golgi and possesses two specific endoplasmic reticulum export motifs in its carboxyl-terminal cytoplasmic tail. J Biol Chem 281: 31106-31118.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.