PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 58 | 1 | 95-100
Article title

Bacterial recognition of thermal glycation products derived from porcine serum albumin with lactose

Content
Title variants
Languages of publication
EN
Abstracts
EN
Recently, glyco-therapy is proposed to prevent the interaction of bacterial lectins with host ligands (glycoconjugates). This interaction represents the first step in infection. Neoglycans referred to as PSA-Lac (PSA-Glu (β1-4) Gal) were obtained by conjugation of porcine serum albumin (PSA) with lactose at 80 °C, 100 °C and 120 ºC. Characterization studies of the products showed that PSA could contain 1, 38 or 41 added lactoses, depending on the reaction temperature. These neoglycans were approximately 10 times more glycated than PSA-Lac obtained in previous work. Lactose conjugation occurred only at lysines and PSA-Lac contained terminal galactoses as confirmed by Ricinus communis lectin recognition. Furthermore, Escherichia coli K88+, K88ab, K88ac and K88ad adhesins showed affinity toward all PSA-Lac neoglycans, and the most effective was the PSA-Lac obtained after 100 ºC treatment. In vitro, this neoglycan partially inhibited the adhesion of E. coli K88+ to piglet mucin (its natural ligand). These results provide support for the hypothesis that glycated proteins can be used as an alternative for bioactive compounds for disease prevention.
Publisher

Year
Volume
58
Issue
1
Pages
95-100
Physical description
Dates
published
2011
received
2010-08-26
revised
2010-12-11
accepted
2011-01-14
(unknown)
2011-03-14
Contributors
  • Laboratorio de Bioquímica de Proteínas, Coordinación de Ciencia de los Alimentos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD A.C.), Hermosillo, Sonora, Mexico
  • Laboratorio de Bioquímica de Proteínas, Coordinación de Ciencia de los Alimentos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD A.C.), Hermosillo, Sonora, Mexico
  • Department of Nutritional Sciences, University of Arizona, Tucson, United States
  • Laboratorio de Bioquímica de Proteínas, Coordinación de Ciencia de los Alimentos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD A.C.), Hermosillo, Sonora, Mexico
References
  • Acharya AS, Sussman LG, Manning JM (1983) Schiff base adducts of glyceraldehyde with hemoglobin. differences in the Amadori rearrangement at the alpha-amino groups. J Biol Chem 258: 2296-2302.
  • Andon NL, Hollingworth S, Koller A, Greenland AJ, Yates JR, Hanes PA (2002) Proteomic characterization of wheat amyloplasts using identification of proteins by tandem mass spectrometry. Proteomics 2: 1156-1168.
  • Baynes JW, Watkins NG, Fisher CI, Hull CJ, Patrick JS, Ahmed MU, Dunn JA, Thorpe SR (1989) The Amadori product on protein: structure and reactions. Prog Clin Biol Res 304: 43-67.
  • Blome MC, Schengrund CL (2008) Multivalent binding of ricin to bovine serum albumin-based neoglycoconjugates Toxicon 51: 1214-1224.
  • Boratynski J, Roy R (1998) High temperature conjugation of proteins with carbohydrates. Glycoconj J 15: 131-138.
  • Chevalier F, Chobert JM, Dalgalarrondo M, Choiset M, Haertle T (2002) Maillard glycation of beta-lactoglobulin induces conformation changes. Nahrung 46: 58-63.
  • Fenaille F, Morgan F, Parisod V, Tabet JC, Guy PA (2003) Solid-state glycation of beta-lactoglobulin monitored by electrospray ionisation mass spectrometry and gel electrophoresis techniques. Rapid Commun Mass Spectrom 17: 1483-1492.
  • Garlick RL, Mazer JS (1983) The principal site of nonenzymatic glycosylation of human serum albumin in vivo. J Biol Chem 258: 6142-6146.
  • Grange P, Mouricout M, Levery S, Francis D, Erickson A (2002) Evaluation of receptor binding specificity of Escherichia coli K88 (F4) fimbrial adhesin variants using porcine serum transferrin and glycosphingolipids as model receptors. Infect Immun 70: 2336-2343.
  • He Y, Rozak DA, Sari N, Chen Y, Bryan P, Orban J (2006) Structure, dynamics, and stability variation in bacterial albumin binding modules: implications for species specificity. Biochemistry 45: 10102-10109.
  • Kańska U, Boratyński J (2002) Thermal glycation of proteins by d-glucose and d-fructose. Arch Immunol Ther Exp (Warsz) 50: 61-66.
  • Kislinger T, Humeny A, Seeber S, Becker C, Pischetsrieder C (2002) Qualitative determination of the early maillard-products by MALDI-ToF mass spectrometry peptide mapping. Eur Food Res Technol 215: 65-71.
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
  • Ledesma-Osuna AI, Ramos-Clamont G, Vázquez-Moreno L (2008) Characterization of bovine serum albumin glycated with glucosa, galactose and lactose. Acta Biochim Pol 55: 491-497.
  • Mennella C, Visciano M, Napolitano A, Del Castillo MD, Fogliano V (2006) Glycation of lysine-containing dipeptides. J Pept Sci 12: 291-296.
  • Nacharaju P, Acharya AS (1992) Amadori rearrangement potential of hemoglobin at its glycation sites is dependent on the three-dimensional structure of protein. Biochemistry 31: 12673-12679.
  • Sarabia-Sainz A, Ramos-Clamont G, Candia-Plata MC, Vázquez-Moreno L (2009) Biorecognition of Escherichia coli K88 adhesin for glycated porcine albumin. Int J Biol Macromol 44: 175-181.
  • Shapiro R, McManus MJ, Zalut C, Bunn HF (1980) Sites of nonenzymatic glycosylation of human hemoglobin A. J Biol Chem 255: 3120-3127.
  • Sharon N (2006) Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim Biophys Acta 1760: 527-537.
  • Sharon N, Lis H (1989) Lectins as cell recognition molecules. Science 246: 227-234.
  • Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortensen P, Shevchenko A, Boucherie H, Mann M (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci USA 93: 14440-14445.
  • Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44: 129-146.
  • Stowell CP, Lee YC (1978) The binding of d-glucosyl-neoglycoproteins to the hepatic asialoglycoprotein receptor. J Biol Chem 253: 6107-6110.
  • Sun Y, Hayakawa S, Ogawa M, Izumori K (2005) Evaluation of the site specific protein glycation and antioxidant capacity of rare sugar protein/peptide conjugates. J Agric Food Chem 53: 10205-10212.
  • Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3: 97-130.
  • Verdonck F, Cox E, Vancaeneghem S, Goddeeris BM (2004) The interaction of F4 fimbriae with porcine enterocytes as analysed by surface plasmon resonance. FEMS Immunol Med Microbiol 41: 243-248.
  • Willemsen PTJ, De Graaf FK (1992) Age and serotype dependent binding of K88 fimbriae to porcine intestinal receptors. Microb Pathog 12: 367-375.
  • Wong YC (1995) Neoglycoconjugates and their applications in glycobiology. Curr Opin Struct Biol 5: 599-604.
  • Yacoby I, Bar H, Benhar I (2007) Targeted drug-carrying bacteriophages as antibacterial nanomedicines. Antimicrob Agents Chemother 51: 2156-2163.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv58i1p95kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.