PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 58 | 1 | 51-58
Article title

Straight and branched (ω-1)-hydroxylated very long chain fatty acids are components of Bradyrhizobium lipid A

Content
Title variants
Languages of publication
EN
Abstracts
EN
Lipopolysaccharides of seven Bradyrhizobium strains and three whole-cell fatty acid preparations from bacteria isolated from nodules of Sarothamnus scoparius (Common Broom) were studied for the presence of very long chain (ω-1)-hydroxy fatty acids. Several such fatty acids were identified. Among them, straight-chain as well as mono- and dimethyl branched acids with chains in the range from 26 to 34 carbon atoms were found. Pyrrolidides and 4,4-dimethyloxazoline derivatives were used to determine the branching position. Carbons at the (ω-10) and/or (ω-11) positions in alkyl chains were points of attachment of methyl groups. These data complete the structure of bradyrhizobial lipid A with important details. The obtained results can be applied in the chemotaxonomy of Bradyrhizobium.
Keywords
Publisher

Year
Volume
58
Issue
1
Pages
51-58
Physical description
Dates
published
2011
received
2010-07-23
revised
2011-01-13
accepted
2011-03-08
(unknown)
2011-03-17
Contributors
author
  • Department of Genetics and Microbiology, Maria Curie-Sklodowska University, Lublin, Poland
  • Department of Genetics and Microbiology, Maria Curie-Sklodowska University, Lublin, Poland
References
  • Andersson BA, Holman RT (1974) Pyrrolidides for mass spectrometric determination of the position of the double bond in monounsaturated fatty acids. Lipids 9: 185-190.
  • Becker A, Fraysse N, Sharypova L (2005) Recent advances in studies on structure and symbiosis-related function of rhizobial K-antigen and lipopolysaccharide. Mol Plant-Microbe Interact 18: 899-905.
  • Bhat UR, Mayer H, Yokota A, Hollingsworth RI, Carlson RW (1991a) Occurrence of lipid A variants with 27-hydroxyoctacosanoic acid in lipopolysaccharides from members of the family Rhizobiaceae. J Bacteriol 173: 2155-2159.
  • Bhat UR, Carlson RW, Busch M, Mayer H (1991b) Distribution and phylogenetic significance of 27-hydroxy-octacosanoic acid in lipopolysaccharides from bacteria belonging to the alpha-2 subgroup of Proteobacteria. Int J Syst Bacteriol 41: 213-217.
  • Choma A (1999) Fatty acid composition of Mesorhizobium huakuii lipopolysaccharides. Identification of 27-oxooctacosanoic acid. FEMS Microbiol Lett 177: 257-262.
  • Choma A, Sowinski P (2004) Characterization of Mesorhizobium huakuii lipid A containg both d-galacturonic acid and phosphate residues. Eur J Biochem 271: 1310-1322.
  • Carrion M, Bhat UR, Reuhs B, Carlson RW (1990) Isolation and characterization of the lipopolysaccharides from Bradyrhizobium japonicum. J Bacteriol 172: 1725-1731.
  • Couderc F, De Briel D, Demont N, Gilard V, Promé JC (1991) Mass spectrometry as a tool for identifying group D2 corynebacteria by their fatty acid profiles. J Gen Microbiol 137: 1903-1909.
  • Fay L, Richli U (1991) Location of double bonds in polyunsaturated fatty acids by gas chromatography-mass spectrometry after 4,4-dimethyloxazoline derivatization. J Chromatogr 541: 89-98.
  • Ferguson GP, Datta A, Carlson RW, Walker GC (2005) Importance of unusually modified lipid A in Sinorhizobium stress resistance and legume symbiosis. Mol Microbiol 56: 68-80.
  • Fraysse N, Jabbouri S, Treilhou M, Couderc F, Poinsot V (2002) Symbiotic conditions induce structural modifications of Sinorhizobium sp. NGR234 surface polysaccharides. Glycobiology 12: 741-748.
  • Gil-Serrano AM, Gonzalez-Jimenez I, Tejero-Mateo P, Megias M, Romero-Vazquez MJ (1994) Analysis of the lipid moiety of lipopolysaccharide from Rhizobium tropici CIAT899: Identification of 29-hydroxytriacontanoic acid. J Bacteriol 176: 2454-2457.
  • Goren MB (1972) Mycobacterial lipids: selected topics. Bacteriol Rev 36: 33-64.
  • Gudlavalleti SK, Forsberg LS (2003) Structural characterization of the lipid A component of Sinorhizobium sp. NGR234 rough and smooth form lipopolysaccharide J Biol Chem 278: 3957-3968.
  • Hamilton JTG, Christi WW (2000) Mechanisms for ion formation during the electron impact-mass spectrometry of picolinyl ester and 4,4-dimethoxazoline derivatives of fatty acids. Chem Phys Lipids 105: 93-104.
  • Hollingsworth RI, Carlson RW (1989) 27-hydroxyoctacosanoic acid is a major structural fatty acyl component of the lipopolysaccharide of Rhizobiium trifolii ANU843. J Biol Chem 264: 9300-9303.
  • Izmailov SF, Zhiznevskaya GYa, Kosenko LV, Troitskaya GN, Kudryavtseva NN, Borodenko LI, Dubrovo PN, Russa R, Pietras H, Lorkiewicz Z (1999) Chemical characterization of effective and ineffective strains of Rhizobium leguminosarum bv. viciae. Acta Biochim Pol 46: 1001-1009.
  • Jeyaretnam B, Glushka J, Kolli VS, Carlson RW (2002) Characterization of a novel lipid-A from Rhizobium species Sin-1.J Biol Chem 277: 41802-41810.
  • Johnson KG, Perry MB (1976) Improved techniques for the preparation of bacterial lipopolysaccharides. Can J Microbiol 22: 29-34.
  • Kannenberg EL, Reuhs BL, Forsberg LS, Carlson RW (1998) Lipopolysaccharides and K-antigens: their structures, biosynthesis and functions. In The Rhizobiaceae. Spaink HP, Kondorosi A, Hooykaas PJJ, eds, pp 119-154. Kluwer Academic Publishers.
  • Komaniecka I, Choma A, Lindner B, Holst O (2010) The structure of a novel neutral lipid A from the lipopolysaccharide of Bradyrhizobium elkanii containing three mannoses units in the backbone. Chemistry 16: 2922-2929.
  • Lerouge I, Vanderleyden J (2002) O-antigen structural variation: Mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol Rev 26: 17-47.
  • Moll H, Sonesson A, Jantzen E, Marre R, Zähringer U (1992) Identification of 27-oxo-octacosanoic acid and heptacosane-1,27-dioic acid in Legionella pneumophila. FEMS Microbiol Lett 76: 1-6.
  • Que NLS, Ribeiro AA, Raetz CRH (2000a) Two-dimensional NMR spectroscopy and structures of six lipid A species from Rhizobium etli CE3. J Biol Chem 275: 28017-28027.
  • Que NLS, Lin S, Cotter RJ, Raetz CRH (2000b) Purification and mass spectrometry of six lipid A species from the bacterial endosymbiont Rhizobium etli. J Biol Chem 275: 28006-28016.
  • Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458: 1191-1196.
  • Puvanesarajah V, Schell FM, Gerhold D, Stacey G (1987) Cell surface polysaccharides from Bradyrhizobium japonicum and non-nodulating mutant. J Bacteriol 169: 137-141.
  • Rontani JF, Aubert C (2008) Hydrogen and trimethylsilyl transfer during EI mass spectral fragmentation of hydroxycarboxylic and oxocarboxylic acid trimethylsilyl derivatives. J Am Soc Mass Spectrom 19: 66-75.
  • Russa R, Urbanik-Sypniewska T, Lindström K, Mayer H (1995) Chemical characterization of two lipopolysaccharide species isolated from Rhizobium loti NZP2213. Arch Microbiol 163: 345-351.
  • Sawada H, Kuykendall LD, Young JM (2003) Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J Gen Appl Microbiol 49: 155-179.
  • Sharypova LA, Niehaus K, Scheidle H, Holst O, Becker A (2003) Sinorhizobium melilotii acpXL mutant lacks the 28C hydroxylated fatty acid moiety of lipid A and does not express a slow migrating form of lipopolysaccharide. J Biol Chem 278: 12946-12954.
  • Silipo A, De Castro C, Lanzetta R, Molinaro A, Parrilli M (2004) Full structural characterization of the lipid A components from the Agrobacterium tumefaciens strain C58 lipopolysaccharide fraction. Glycobiology 14: 805-815.
  • Sonesson A, Jantzen E, Bryn K, Tangen T, Eng J, Zähringer U (1994) Composition of 2,3-dihydroxy fatty acid-containing lipopolysaccharides from Legionella israelensis, Legionella maceachernii and Legionella micdadei. Microbiology 140: 1261-1271.
  • Sonesson A, Jantzen E, Tangen T, Zähringer U (1994a) Chemical composition of lipopolysaccharides from Legionella bozemanii and Legionella longbeachae. Arch Microbiol 162: 215-221.
  • Sonesson A, Jantzen E, Tangen T, Zähringer U (1994b) Chemical characterization of lipopolysaccharides from Legionella feeleii, Legionella hackeliae and Legionella jordanis. Microbiology 140: 2663-2671.
  • Tighe SW, de Lajudie P, Dipietro K, Lindström K, Nick G, Jarvis BDW (2000) Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium, and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50: 787-801.
  • Tulloch AP (1980) Cutin acids: Synthesis and mass spectrometry of methyl 16-hydroxy-7-oxo-, 16-hydroxy-8-oxo-, 16-hydroxy-9-oxo-, 16-hydroxy-10-oxo- and 7,16-,8, 16-, 9, 16- and 10,16-dihydroxyhexadecanoates. Lipids 15: 881-888.
  • Vanderlinde EM, Muszynski A, Harrison JJ, Koval SF, Foreman DL, Ceri H, Kannenberg EL, Carlson RW, Yost CK (2009) Rhizobium leguminosarum biovar viciae 3841, deficient in 27-hydroxyoctacosanoate-modified lipopolysaccharide, is impaired in desiccation tolerance, biofilm formation and motility. Microbiology 155: 3055-3069.
  • Vedam V, Kannenberg E, Datta A, Brown D, Haynes-Gann JG, Sherrier DJ, Carlson RW (2006) The pea nodule environment restores the ability of a Rhizobium leguminosarum lipopolysaccharide acpXL mutant to add 27-hydroxyoctacosanoic acid to its lipid A. J Bacteriol 188: 2126-2133.
  • Vedam V, Kannenberg EL, Haynes JG, Sherrier DJ, Datta A, Carlson RW (2003) A Rhizobium leguminosarum acpLX mutant produces lipopolysaccharide lacking 27-hydroxyoctacosnoic acid. J Bacteriol 185: 1841-1850.
  • Vincent MA (1970) Manual for the practical study of root-nodule bacteria. international biological programme. Handbook No. 15. Blackwell Oxford Edinburgh.
  • Wollenweber HW, Rietschel ET (1990) Analysis of lipopolysaccharide (lipid A) fatty acids. J Microbiol Methods 11: 195-211.
  • Yokota A, Sakane T, Ophel K, Sawada H (1993) Further studies on the cellular fatty acid composition of Rhizobium and Agrobacterium species. Inst Ferm Osaka Res Commun 16: 86-94.
  • Young MJ, Kuykendall DL, Martinez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51: 89-103.
  • Zähringer U, Lindner B, Rietschel ET (1999) Chemical structure of lipid A: recent advances in structural analysis of biologically active molecules. Endotoxin in Health and Disease. Brade H, Opal SM, Vogel SN, Morrison DC, eds, pp 93-114. Marcel Dekker, New York.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv58i1p51kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.