Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 57 | 4 | 479-485

Article title

Reversion of argE3 to Arg+ in Escherichia coli AB1157 -an informative bacterial system for mutation detection

Content

Title variants

Languages of publication

EN

Abstracts

EN
This review concerns reversion of the argE3 (ochre) nonsense mutation to prototrophy in E. coli AB1157 strain as an informative system for mutation detection. Strain AB1157 bears the argE3 (ochre), hisG4 (ochre) and thr-1 (amber) mutations, and the supE44 amber suppressor on its chromosome. The Arg+ phenotype can be restored by (i) any base substitution at the argE3 site that changes the nonsense UAA codon to any sense nucleotide triplet or to UAG recognized by the supE44 amber suppressor, or (ii) suppressor mutations enabling the reading of the UAA nonsense codon. The argE3 → Arg+ reversion-based system enables (i) determination of the spontaneous or induced mutation level; (ii) determination of base substitutions (suppressor analysis); (iii) examination of transcription-coupled repair (TCR) since targets for DNA damage are situated on the transcribed or coding strand of DNA; (iv) detection of mutations resulting from single stranded DNA damage. This review focuses on studies carried out since the early 1990s till now with the application of the AB1157-based mutation detection system. Recently, the system has been used to obtain new data on the processes of methyl methanesulfonate-induced mutagenesis and DNA repair in E. coli alkB- mutants.

Year

Volume

57

Issue

4

Pages

479-485

Physical description

Dates

published
2010
received
2010-07-12
revised
2010-10-06
accepted
2010-10-21
(unknown)
2010-10-27

Contributors

author
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland

References

  • Ames BN, Lee FD, Durston WE (1973) An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Nat Acad Sci USA 70: 782-786.
  • Bachmann BJ (1987) Derivation and genotype of some mutant derivatives of Escherichia coli K-12. In Escherichia coli and Salmonella typhimurium. In Cellular and molecular biology. Neichardt FC, Ingraham J, Low KB, Magasanik B, Schaechler M, Umbarger HE, eds, vol 2, pp. 1190-1219. ASM Press, Washington, DC.
  • Bockrath RC, Palmer JE (1977) Differential repair of premutational UV-lessions at tRNA genes in E. coli. Mol Gen Genet 156: 133-140.
  • Bockrath RC, Barlow A, Engstrom J (1987) Mutation frequency decline in Escherichia coli B/r after mutagenesis with ethyl ethanesulfonate. Mutat Res 183: 241-247.
  • Bridges BA, Dennis RE, Munsen RJ (1967) Mutation in Escherichia coli B/r WP2 try- by reversion or suppression of a chain-terminating codon. Mutat Res 4: 502-504.
  • Coupples CG, Miller JH (1989) A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci USA 86: 5345-5349.
  • Coupples CG, Cabrera M, Cruz C, Miller JH (1990) A set of lacZ mutations in Escherichia coli that allow rapid detection of specific frameshift mutations. Genetics 125: 275-280.
  • D'Agostini F, De Flora S (1994) Potent carcinogenicity of uncovered halogen lamps in hairless mice. Cancer Res 54: 5081-5085.
  • D'Agostini F, Izzoti A, De Flora S (1993) Induction of micronuclei in cultured human lymphocytes exposed to quartz halogen lamps and its prevention by glass covers. Mutagenesis 8: 87-90.
  • De Flora S, Camoirano A, Izzoti A, Bennicelli C (1990) Potent genotoxicity of halogen lamps, compared to fluorescent light and sunlight. Carcinogenesis 11: 2171-2177.
  • Dinglay S, Trewick SC, Lindahl T, Sedgwick B (2000) Defective processing of methylated single-stranded DNA by E. coli AlkB mutants. Genes Dev 14: 2097-2105.
  • Echols H, Lu C, Burgers PMJ (1983) Mutator strains of Escherichia coli, mutD and dnaQ with defective exonucleolytic editing by DNA polymerase III holoenzyme. Proc Natl Acad Sci USA 80: 2189-2192.
  • Fabisiewicz A, Janion C (1998) DNA mutagenesis and repair in UV-irradiated Escherichia coli K-12 under condition of mutation frequency decline. Mutat Res 402: 59-66.
  • Falnes PO, Johansen RF, Seeberg E (2002) AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 419: 178-182.
  • Foster P (1994) Population dynamics of a Lac- Strain of Escherichia coli during selection for lactose utilization. Genetics 138: 253-261
  • George DL, Witkin EM (1974) Slow excision repair in an mfd mutant of Escherichia coli B/r. Mol Gen Genet 133: 283-291.
  • Grzesiuk E, Janion C (1993) Some aspects of EMS-induced mutagenesis in Escherichia coli. Mutat Res 297: 313-321.
  • Grzesiuk E, Janion C (1994) The frequency of MMS-induced, umuDC-dependent, mutations declines during starvation in Escherichia coli. Mol Gen Genet 245: 486-492.
  • Grzesiuk E, Janion C (1996) MMS-induced mutagenesis and DNA repair in Escherichia coli dnaQ49: contribution of UmuD' to DNA repair. Mutat Res 362: 147-154.
  • Grzesiuk E, Janion C (1998) Mutation frequency decline in MMS-treated Escherichia coli K-12 mutS strains. Mutagenesis 13: 127-132.
  • Janion C, Sikora A, Nowosielska A, Grzesiuk E (2003) E. coli BW535, a triple mutant for the DNA repair genes xth, nth, and nfo, chronically induces the SOS response. Environ Mol Mutagen 41: 237-242.
  • Kataoka H, Yamamoto Y, Sekiguchi M (1983) A new gene (alkB) of Escherichia coli that controls sensitivity to methyl methane sulfonate. J Bacteriol 153: 1301-1307.
  • Kato T, Shinoura Y, Templin A, Clark AJ (1980) Analysis of ultraviolet light-induced suppressor mutations in the strain of Escherichia coli K-12 AB1157. An implication for molecular mechanisms of UV mutagenesis. Mol Gen Genet 180: 283-291.
  • Michaels ML, Miller JH (1992) The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J Bacteriol 174: 6321-6325.
  • Mortelmans K (2006) Isolation of plasmid pKM101 in the Stocker laboratory. Mutat Res 612: 151-164.
  • Nieminuszczy J, Sikora A, Wrzesinski M, Janion C, Grzesiuk E (2006a) AlkB dioxygenase in preventing MMS-induced mutagenesis in Escherichia coli: effect of Pol V and AlkA proteins. DNA Repair 5: 181-188.
  • Nieminuszczy J, Janion C, Grzesiuk E (2006b) Mutator specificity of Escherichia coli alkB117 allele. Acta Biochim Pol 53: 425-428.
  • Nieminuszczy J, Mielecki D, Sikora A, Wrzesinski M, Chojnacka A, Krwawicz J, Janion C, Grzesiuk E (2009) Mutagenic potency of MMS-induced 1meA/3meC lesions in E. coli. Environ Mol Mutagen 50: 791-799.
  • Nowosielska A, Grzesiuk E (2000) Reversion of argE3 ochre strain Escherichia coli AB1157 as a tool for studying the stationary-phase (adaptive) mutations. Acta Biochim Pol 47: 459-467.
  • Nowosielska A, Nieminuszczy J, Grzesiuk E (2004a) Spontaneous mutagenesis in exponentially growing and stationary-phase, umuDC-proficient and -deficient, Escherichia coli dnaQ49. Acta Biochim Pol 51: 683-692.
  • Nowosielska A, Janion C, Grzesiuk E (2004b) Effect of deletion of SOS-induced polymerases, pol II, IV, and V, on spontaneous mutagenesis in Escherichia coli mutD5. Environ Mol Mutagen 43: 226-234.
  • Ohta T, Tokishita S, Tsunoi R, Ohmae S, Yamagata H (2002) Characterization of Trp+ reversions in Escherichia coli strain WP2uvrA. Mutagenesis 17: 313-316.
  • Płachta A, Janion C (1992) Is the tRNA ochre suppressor supX derived from gltT ? Acta Biochim Pol 39: 265-269.
  • Prival MJ (1996) Isolation of glutamate-inserting ochre suppressor mutants of Salmonella typhimurium and Escherichia coli. J Bacteriol 178: 2989-2990.
  • Raftery LA, Yarus M (1987) Systematic alterations in the anticodon arm make tRNAGlu-Suoc a more efficient suppressor. EMBO J 6: 1499-1506.
  • Sargentini NJ, Smith KC (1989) Mutational spectrum analysis of umuC-independent and umuC-dependent g-radiation mutagenesis in Escherichia coli. Mutat Res 211: 193-203.
  • Savery NJ (2007) The molecular mechanism of transcription-coupled DNA repair. Trends Microbiol 15: 326-333.
  • Sedgwick B, Bates PA, Paik J, Jacobs SC, Lindahl T (2007) Repair of alkylated DNA: Recent advances. DNA Repair 6: 429-442.
  • Selby CP, Sancar A (1993) Molecular mechanism of transcription-repair coupling. Science 260: 53-58.
  • Shinoura Y, Kato R, Glickman BW (1983) A rapid and simple method for the determination of base substitution and frameshift specificity of mutagens. Mutat Res 111: 43-49.
  • Sikora A, Mielecki D, Chojnacka A, Nieminuszczy J, Wrzesinski M, Grzesiuk E (2010) Lethal and mutagenic properties of MMS-generated DNA lesions in Escherichia coli cells deficient in BER and AlkB-directed DNA repair. Mutagenesis 25: 139-147.
  • Śledziewska-Gójska E, Janion C (1989) Alternative pathways of methyl methanesulfonate-induced mutagenesis in Escherichia coli. Mol Gen Genet 216: 126-131.
  • Śledziewska-Gójska E, Grzesiuk E, Płachta A, Janion C (1992) Mutagenesis of Escherichia coli: A method for determining mutagenic specificity by analysis of tRNA suppressors. Mutagenesis 7: 41-46.
  • Todd PA, Monti-Bragadin C, Glickman BW (1979) MMS mutagenesis in strains of Escherichia coli carrying the R46 mutagenic enhancing plasmid: Phenotypic analysis of Arg+ revertants. Mutat Res 62: 227-237.
  • Trewick SC, Henshaw TF, Hausinger RP, Lindahl T, Sedgwick B (2002) Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 419: 174-178.
  • Witkin EM (1994) Mutation frequency decline revisited. BioEssays 16: 437-444.
  • Wójcik A, Janion C (1997) Mutation induction and mutation frequency decline in halogen light-irradiated Escherichia coli K-12 AB1157 strains. Mutat Res 390: 85-92.
  • Wójcik A, Janion C (1999) Effect of Tn10/Tn5 transposons on the survival and mutation frequency of halogen light-irradiated AB1157 Escherichia coli K-12. Mutagenesis 14: 129-134.
  • Wójcik A, Grzesiuk E, Tudek B, Janion C (1996) Conformation of plasmid DNA from Escherichia coli deficient in the repair systems protecting DNA from 8-oxoguanine lesions. Biochimie 78: 85-89.
  • Wrzesiński M, Nieminuszczy J, Sikora A, Mielecki D, Chojnacka A, Kozłowski M, Krwawicz J, Grzesiuk E (2010) Contribution of transcription-coupled DNA repair to MMS-induced mutagenesis in E. coli strains deficient in functional AlkB protein. Mutat Res 688: 19-27.
  • Wyatt MD, Pittman DL (2006) Methylating agents and DNA repair responses: methylated bases and sources of strand breaks. Chem Res Toxicol 19: 1580-1594.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv57p479kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.