PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 57 | 4 | 431-434
Article title

The mitochondrial complex II and ATP-sensitive potassium channel interaction: quantitation of the channel in heart mitochondria

Content
Title variants
Languages of publication
EN
Abstracts
EN
The mitochondrial ATP-sensitive potassium channel (mKATP) is important in cardioprotection, although the channel remains molecularly undefined. Several studies have demonstrated that mitochondrial complex II inhibitors activate the mKATP, suggesting a potential role for complex II in channel composition or regulation. However, these inhibitors activate mKATP at concentrations which do not affect bulk complex II activity. Using the potent complex II inhibitor Atpenin A5, this relationship was investigated using tight-binding inhibitor theory, to demonstrate that only 0.4 % of total complex II molecules are necessary to activate the mKATP. These results estimate the mKATP content at 15 channels per mitochondrion.
Publisher

Year
Volume
57
Issue
4
Pages
431-434
Physical description
Dates
published
2010
received
2010-08-31
revised
2010-10-31
accepted
2010-11-15
(unknown)
2010-11-19
Contributors
  • Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA
  • Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
  • Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA
References
  • Adebiyi A, McNally EM, Jaggar JH (2008) Sulfonylurea receptor-dependent and -independent pathways mediate vasodilation induced by ATP-sensitive K+channel openers. Mol Pharmacol 74: 736-743.
  • Ardehali H, Chen Z, Ko Y, Mejia-Alvarez R, Marban E (2004) Multiprotein complex containing succinate dehydrogenase confers mitochondrial ATP-sensitive K+channel activity. Proc Natl Acad Sci USA 101: 11880-11885.
  • Brand MD, Pakay JL, Ocloo A, Kokoszka J, Wallace DC, Brookes PS, Cornwall EJ (2005) The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem J 392: 353-362.
  • Dzeja PP, Bast P, Ozcan C, Valverde A, Holmuhamedov EL, Van Wylen DG, Terzic A (2003) Targeting nucleotide-requiring enzymes: implications for diazoxide-induced cardioprotection. Am J Physiol Heart Circ Physiol 284: H1048-H1056.
  • Facundo HT, Fornazari M, Kowaltowski AJ (2006) Tissue protection mediated by mitochondrial K+channels. Biochim Biophys Acta 1762: 202-212.
  • Facundo HT, de Paula JG, Kowaltowski AJ (2007) Mitochondrial ATP-sensitive K+channels are redox-sensitive pathways that control reactive oxygen species production. Free Radic Biol Med 42: 1039-1048.
  • Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D'Alonzo AJ, Lodge NJ, Smith MA, Grover GJ (1997) Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+channels. Possible mechanism of cardioprotection. Circ Res 81: 1072-1082.
  • Horsefield R, Yankovskaya V, Sexton G, Whittingham W, Shiomi K, Omura S, Byrne B, Cecchini G, Iwata S (2006) Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction. J Biol Chem 281: 7309-7316.
  • Mironova GD, Negoda AE, Marinov BS, Paucek P, Costa AD, Grigoriev SM, Skarga YY, Garlid KD (2004) Functional distinctions between the mitochondrial ATP-dependent K+channel (mitoKATP) and its inward rectifier subunit (mitoKIR). J Biol Chem 279: 32562-32568.
  • Miyadera H, Shiomi K, Ui H, Yamaguchi Y, Masuma R, Tomoda H, Miyoshi H, Osanai A, Kita K, Omura S (2003) Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase). Proc Natl Acad Sci USA 100: 473-477.
  • Nichols CG (2006) KATP channels as molecular sensors of cellular metabolism. Nature 440: 470-476.
  • Ockaili RA, Bhargava P, Kukreja RC (2001) Chemical preconditioning with 3-nitropropionic acid in hearts: role of mitochondrial K(ATP) channel. Am J Physiol Heart Circ Physiol 280: H2406-H2411.
  • Paucek P, Mironova G, Mahdi F, Beavis AD, Woldegiorgis G, Garlid KD (1992) Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K+channel from rat liver and beef heart mitochondria. J Biol Chem 267: 26062-26069.
  • Queliconi BB, Wojtovich AP, Nadtochiy SM, Kowaltowski AJ, Brookes PS (2010) Redox regulation of the mitochondrial KATP channel in cardioprotection. Biochim Biophys Acta - Mol Cell Res doi:10.1016/j.bbamcr.2010.11.005.
  • Schafer G, Wegener C, Portenhauser R, Bojanovski D (1969) Diazoxide, an inhibitor of succinate oxidation. Biochem Pharmacol 18: 2678-2681.
  • Schwerzmann K, Cruz-Orive LM, Eggman R, Sanger A, Weibel ER (1986) Molecular architecture of the inner membrane of mitochondria from rat liver: a combined biochemical and stereological study. J Cell Biol 102: 97-103.
  • Schwerzmann K, Hoppeler H, Kayar SR, Weibel ER (1989) Oxidative capacity of muscle and mitochondria: correlation of physiological, biochemical, and morphometric characteristics. Proc Natl Acad Sci USA 86: 1583-1587.
  • Streicher-Scott J, Lapidus R, Sokolove PM (1993) Use of carboxyatractylate and tight-binding inhibitor theory to determine the concentration of functional mitochondrial adenine nucleotide translocators in a reconstituted system. Anal Biochem 210: 69-76.
  • Wojtovich AP, Brookes PS (2008) The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: Implications for ischemic preconditioning. Biochim Biophys Acta 1777: 882-889.
  • Wojtovich AP, Brookes PS (2009) The complex II inhibitor atpenin A5 protects against cardiac ischemia-reperfusion injury via activation of mitochondrial KATP channels. Basic Res Cardiol 104: 121-129.
  • Wojtovich AP, Williams DM, Karcz MK, Lopes CM, Gray DA, Nehrke KW, Brookes PS (2010) A novel mitochondrial KATP channel assay. Circ Res 106: 1190-1196.
  • Ye B, Kroboth SL, Pu JL, Sims JJ, Aggarwal NT, McNally EM, Makielski JC, Shi NQ (2009) Molecular identification and functional characterization of a mitochondrial sulfonylurea receptor 2 splice variant generated by intraexonic splicing. Circ Res 105: 1083-1093.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv57p431kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.