PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 56 | 4 | 687-694
Article title

Cardioprotective effect of 5-lipoxygenase gene (ALOX5) silencing in ischemia-reperfusion

Content
Title variants
Languages of publication
EN
Abstracts
EN
It is well known that 5-lipoxygenase derivates of arachidonic acid play an important pathogenic role during myocardial infarction. Therefore, the gene encoding arachidonate 5-lipoxygenase (ALOX5) appears to be an attractive target for RNA interference (RNAi) application. In experiments on cultivated cardiomyocytes with anoxia-reoxygenation (AR) and in vivo using rat model of heart ischemia-reperfusion (IR) we determined influence of ALOX5 silencing on myocardial cell death. ALOX5 silencing was quantified using real-time PCR, semi-quantitative PCR, and evaluation of LTC4 concentration in cardiac tissue. A 4.7-fold decrease of ALOX5 expression (P < 0.05) was observed in isolated cardiomyocytes together with a reduced number of necrotic cardiomyocytes (P < 0.05), increased number live (P < 0.05) and unchanged number of apoptotic cells during AR of cardiomyocytes. Downregulation of ALOX5 expression in myocardial tissue by 19% (P < 0.05) resulted in a 3.8-fold reduction of infarct size in an open chest rat model of heart IR (P < 0.05). Thus, RNAi targeting of ALOX5 protects heart cells against IR injury both in culture and in vivo.
Publisher

Year
Volume
56
Issue
4
Pages
687-694
Physical description
Dates
published
2009
received
2009-07-07
revised
2009-11-17
accepted
2009-12-09
(unknown)
2009-12-11
Contributors
  • Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kiev, Ukraine
  • Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kiev, Ukraine
author
  • Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kiev, Ukraine
  • Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kiev, Ukraine
author
  • Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kiev, Ukraine
author
  • Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kiev, Ukraine
  • Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kiev, Ukraine
References
  • Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274: 23679-23682.
  • Buehler A, Martire A, Strohm C, Wolfram S, Fernandez B, Palmen M, Wehrens XH, Doevendans PA, Franz WM, Schaper W, Zimmermann R (2002) Angiogenesis-independent cardioprotection in FGF-1 transgenic mice. Cardiovasc Res 55: 768-777.
  • Dosenko VE, Nagibin VS, Tumanovskaya LV, Moibenko AA, Vaage J (2005) Postconditioning prevents apoptotic necrotic and autophagic cardiomyocyte cell death in culture. Fiziol Zh 51: 12-17.
  • Dosenko VE, Nagibin VS, Tumanovskaya LV, Zagoriy VY, Moibenko AA, Vaage J (2006) Proteasomal proteolysis in anoxia-reoxygenation, preconditioning and postconditioning of isolated cardiomyocytes. Pathophysiology 13: 119-125.
  • Festjens N, Vanden Berghe T, Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757: 1371-1387.
  • Feuerstein G (1986) Cardiac and vascular effects of leukotrienes. Adv Prostaglandin Thromboxane Leukot Res 16: 299-308.
  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811.
  • Hashimoto H, Miyazawa K, Hagiwara M, Miyasaka K, Nakashima M (1990) Beneficial effects of a new 5-lipoxygenase inhibitor on occlusion- and occlusion-reperfusion-induced myocardial injury. Arzneimittelforschung 40: 126-129.
  • Heise CE, O'Dowd BF, Figueroa DJ, Sawyer N, Nguyen T, Im DS, Stocco R, Bellefeuille JN, Abramovitz M, Cheng R, Williams DL Jr, Zeng Z, Liu Q, Ma L, Clements MK, Coulombe N, Liu Y, Austin CP, George SR, O'Neill GP, Metters KM, Lynch KR, Evans JF (2000) Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem 275: 30531-30536.
  • Ito WD, Schaarschmidt S, Klask R, Hansen S, Schäfer HJ, Mathey D, Bhakdi S (1997) Infarct size measurement by triphenyltetrazolium chloride staining versus in vivo injection of propidium iodide. J Mol Cell Cardiol 29: 2169-2175.
  • Kamohara M, Takasaki J, Matsumoto M, Matsumoto Si, Saito T, Soga T, Matsushime H, Furuichi K (2001) Functional characterization of cysteinyl leukotriene CysLT(2) receptor on human coronary artery smooth muscle cells. Biochem Biophys Res Commun 287: 1088-1092.
  • Kolchin IuN, Popovich LF, Grabovskii LA, Luĭk AI, Moibenko AA (1990) The effect of the 5-lipoxygenase inhibitor quercetin on the functional and morphologic manifestations of myocardial lesions in ischemia and reperfusion of the heart. Kardiologiia 30: 72-75.
  • Kuhn H, Belkner J, Wiesner R, Brash AR (1990) Oxygenation of biological membranes by the pure reticulocyte lipoxygenase. J Biol Chem 265: 18351-18361.
  • Liu P, Misurski DA, Gopalakrishnan V (2003) Cysteinyl leukotriene-dependent (Ca2+)i responses to angiotensin II in cardiomyocytes. Am J Physiol Heart Circ Physiol 284: H1269-H1276.
  • Lynch KR, O'Neill GP, Liu Q, Im DS, Sawyer N, Metters KM, Coulombe N, Abramovitz M, Figueroa DJ, Zeng Z, Connolly BM, Bai C, Austin CP, Chateauneuf A, Stocco R, Greig GM, Kargman S, Hooks SB, Hosfield E, Williams DL Jr, Ford-Hutchinson AW, Caskey CT, Evans JF (1999) Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 399: 789-793.
  • Maccarrone M, Melino G, Finazzi-Agro A (2001) Lipoxygenases and their involvement in programmed cell death. Cell Death Differ 8: 776-784.
  • Martire A, Fernandez B, Buehler A, Strohm C, Schaper J, Zimmermann R, Kolattukudy PE, Schaper W (2003) Cardiac overexpression of monocyte chemoattractant protein-1 in transgenic mice mimics ischemic preconditioning through SAPK/JNK1/2 activation. Cardiovasc Res 57: 523-534.
  • Murphy RC, Gij´on MA (2007) Biosynthesis and metabolism of leukotrienes. Biochem J 405: 379-395.
  • Nakayama H, Chen X, Baines CP, Klevitsky R, Zhang X, Zhang H, Jaleel N, Chua BH, Hewett TE, Robbins J, Houser SR, Molkentin JD (2007) Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 117: 2431-2444.
  • Nordlie MA, Wold LE, Simkhovich BZ, Sesti C, Kloner RA (2006) Molecular aspects of ischemic heart disease: ischemia/reperfusion-induced genetic changes and potential applications of gene and RNA interference therapy. J Cardiovasc Pharmacol Ther 11: 17-30.
  • Ogasawara H, Ishii S, Yokomizo T, Kakinuma T, Komine M, Tamaki K, Shimizu T, Izumi T (2002) Characterization of mouse cysteinyl leukotriene receptors mCysLT1 and mCysLT2: differential pharmacological properties and tissue distribution. J Biol Chem 277: 18763-18768.
  • Parkhomenko AN, Moibenko AA, Kozhuhov SN (2000) First experience of intravenous form of 5-lipoxygenase inhibitor application to patients with acute myocardial infarction: clinico-hemodynamic parallels, influence of medication on necrotic area size. Ukr Cardiol Zh 1: 5-9.
  • Rådmark O (2002) Arachidonate 5-lipoxygenase. Prostaglandins Other Lipid Mediat 68-69: 211-234.
  • Reinecke H, Zhang M, Bartosek T, Murry CE (1999) Survival, integration, and differentiation of cardiomyocyte grafts. Circulation 100: 193-202.
  • Riccioni G, Capra V, D'Orazio N, Bucciarelli T, Bazzano LA (2008) Leukotriene modifiers in the treatment of cardiovascular diseases. J Leukoc Biol 84: 1374-1378.
  • Rossoni G, Sala A, Berti F, Testa T, Buccellati C, Molta C, Muller-Peddinghaus R, Maclouf J, Folco GC (1996) Myocardial protection by the leukotriene synthesis inhibitor BAY X1005: importance of transcellular biosynthesis of cysteinyl-leukotrienes. J Pharmacol Exp Ther 276: 335-341.
  • Roy S, Khanna S, Hussain SR, Biswas S, Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ, Sen CK (2009) MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res 82: 21-29.
  • Sledz CA, Williams BR (2005) RNA interference in biology and disease. Blood 106: 787-794.
  • Spiteller G (2003) Are lipid peroxidation processes induced by changes in the cell wall structure and how are these processes connected with diseases? Med Hypotheses 60: 69-83.
  • Song H, Zhang Z, Wang L (2008) Small interference RNA against PTP-1B reduces hypoxia/reoxygenation induced apoptosis of rat cardiomyocytes. Apoptosis 13: 383-393.
  • Sugano M, Tsuchida K, Hata T, Makino N (2005) RNA interference targeting SHP-1 attenuates myocardial infarction in rats. FASEB J 19: 2054-2056.
  • Tumanovs'ka LV, Dosenko VIe, Nahibin VS, Makohon NV, Moĭbenko OO (2004) Apoptotic, autophagic, and oncotic death of cardiomyocytes in anoxia-reoxygenation. Fiziol Zh 50: 11-18.
  • van Leyen K, Duvoisin RM, Engelhardt H (1998) A function for lipoxygenase in programmed organelle degradation. Nature 395: 392-395.
  • Wolff RA, Chien GL, van Winkle DM (2000) Propidium iodide compares favorably with histology and triphenyl tetrazolium chloride in the assessment of experimentally-induced infarct size. J Mol Cell Cardiol 32: 225-332.
  • Zimmermann KC, Bonzon C, Green DR (2001) The machinery of programmed cell death. Pharmacol Ther 92: 57-70.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv56p687kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.