Preferences help
enabled [disable] Abstract
Number of results
2009 | 56 | 1 | 63-69
Article title

Identification of the csp gene and molecular modelling of the CspA-like protein from Antarctic soil-dwelling psychrotrophic bacterium Psychrobacter sp. B6

Title variants
Languages of publication
We cloned and sequenced the cspA-like gene from a psychrotrophic Antarctic soil-dwelling bacterial strain Psychrobacter sp. B6. The gene is 213 bp long and shows 99% and 98% sequence identity with the Psychrobacter cryohalolentis K5 gene encoding a cold-shock DNA-binding domain protein and the Psychrobacter arcticus transcriptional regulator-CspA gene, respectively. The protein encoded by the Psychrobacter sp. B6 cspA-like gene shows 100% identity with the two proteins mentioned above, and also 61% sequence identity with CspB from Bacillus subtilis and Csp from Bacillus caldolyticus, and 56% - with Escherichia coli CspA protein. A three-dimensional model of the CspA-like protein from Psychrobacter sp. B6 was generated based on three known structures of cold shock proteins: the crystal structure of the major cold shock protein from Escherichia coli (CspA), the NMR structure of the latter protein, and the NMR structure of Csp from Thermotoga maritima. The deduced structure of the CspA-like protein from Psychrobacter sp. B6 was found to be very similar to these known structures of Csp-like proteins.
Physical description
  • Institute of Technical Biochemistry, Technical University of Lodz, Łódź, Poland
  • Centre of Medical Biology, Polish Academy of Sciences, Łódź, Poland
  • Centre of Medical Biology, Polish Academy of Sciences, Łódź, Poland
  • Institute of Technical Biochemistry, Technical University of Lodz, Łódź, Poland
  • Institute of Technical Biochemistry, Technical University of Lodz, Łódź, Poland
  • Institute of Technical Biochemistry, Technical University of Lodz, Łódź, Poland
  • Bae W, Xia B, Inouye M, Severinov K (2000) Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci USA 97: 7784-7789.
  • Berger F, Morellet N, Menu F, Potier P (1996) Cold shock and cold acclimation proteins in the psychrotrophic bacterium Arthrobacter globiformis SI55. J Bacteriol 178: 2999-3007.
  • Ermolenko DN, Makhatadze GI (2002) Bacterial cold-shock proteins. Cell Mol Life Sci 59: 1902-1913.
  • Feng W, Tejero R, Zimmerman DE, Inouye M, Montelione GT (1998) Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site. Biochemistry 37: 10881-10896.
  • Fujii S, Nakasone K, Horikoshi K (1999) Cloning of two cold shock genes, cspA and cspG, from the deep-sea psychrophilic bacterium Shewanella violacea strain DSS12. FEMS Microbiol Lett 178: 123-128.
  • Gualerzi CO, Giuliodori AM, Pon CL (2003) Transcriptional and post-transcriptional control of cold-shock genes. J Mol Biol 331: 527-539.
  • Hebraud M, Dubole E, Potier P, Labadic J (1994) Effect of growth temperature on the protein levels in psychrotropic bacterium. Pseudomonas fragi. J Bacteriol 176: 4017-4024.
  • Horn G, Hofweber R, Kremer W, Kalbitzer HR (2007) Structure and function of bacterial cold shock proteins. Cell Mol Life Sci 64: 1457-1470.
  • Jeffreys AG, Hak KM, SteffanRJ, Foster JW, Bej AK (1998) Growth, survival and characterization of cspA in Salmonella enteritidis following cold shock. Curr Microbiol 36: 29-35.
  • Jiang W, Hou Y, Inouye M (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 272: 196-202.
  • Jones PG, Inouye M (1994) The cold-shock response - a hot topic. Mol Microbiol 11: 811-818.
  • Jones PG, Inouye M (1996) RbfA, a 30S ribosomal binding factor, is a cold-shock protein whose absence triggers the cold-shock response. Mol Microbiol 21: 1207-1218.
  • Jones PG, VanBogelen RA, Neidhardt FC (1987) Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol 169: 2092-2095.
  • Kim WS, Dunn NW (1997) Identification of cold shock gene in lactic acid bacteria and the effect of cold shock on cryotolerance. Curr Microbiol 35: 59-63.
  • Kim WS, Khunajakr N, Donn NW (1998) Effect of cold shock on protein synthesis and cryotolerance of cells frozen for long periods in Lactococcus lactis. Cryobiology 37: 86-91.
  • Kim M-J, Lee YK, Lee HK, Im H (2007) Characterization of cold-shock protein a of antarctic Streptomyces sp. AA8321. Protein J 26: 51-59.
  • Kloks CP, Spronk CA, Lasonder E, Hoffmann A, Vuister GW, Grzesiek S, Hilbers CW (2002) The solution structure and DNA-binding properties of the cold-shock domain of the human Y-box protein YB-1. J Mol Biol 316: 317-326.
  • Kloks CP, Tessari M, Vuister GW, Hilbers CW (2004) Cold shock domain of the human Y-box protein YB-1. Backbone dynamics and equilibrium between the native state and a partially unfolded state. Biochemistry 43: 10237-10246.
  • Kosinski J, Cymerman IA, Feder M, Kurowski MA, Sasin JM, Bujnicki JM (2003) A 'FRankenstein's monster' approach to comparative modelling: merging the finest fragments of fold-recognition models and iterative model refinement aided by 3D structure evaluation. Proteins 53 (Suppl 6): 369-379.
  • Kremer W, Schuler B, Harrieder S, Geyer M, Gronwald W, Welker C, Jaenicke R, Kalbitzer HR (2001) Solution NMR structure of the cold-shock protein from the hyperthermophilic bacterium Thermotoga maritima. Eur J Biochem 268: 2527-2539.
  • Kurowski MA, Bujnicki JM (2003) GeneSilico protein structure prediction meta-server. Nucleic Acids Res 31: 3305-3307.
  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK - a program to check the stereochemical quality of protein structures. J Appl Cryst 26: 283-291.
  • Lopez MM, Makhatadze GI (2000) Major cold shock proteins, CspA from Escherichia coli and CspB from Bacillus subtilis, interact differently with single-stranded DNA templates. Biochim Biophys Acta 1479: 196-202.
  • Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356: 83-85.
  • Mueller U, Perl D, Schmid F X, Heinemann U (2000) Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein. J Mol Biol 297: 975-988.
  • Nakashima K, Kanamaru K, Mizuno T, Horikoshi K (1996) A novel member of the cspA family of genes that is induced by cold-shock in Escherichia coli. J Bacteriol 178: 2994-2997.
  • Newkirk K, Feng W, Jiang W, Tejero R, Emerson SD, Inouye M, Montelione GT (1994) Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA. Proc Natl Acad Sci USA 91: 5114-5118.
  • Peitsch MC (1996) ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans 24: 274-279.
  • Phadtare S, Inouye M, Severinov K (2002) The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells. J Biol Chem 277: 7239-7245.
  • Phadtare S, Hwang J, Severinov K, Inouye M (2003) CspB and CspL, thermostable cold-shock proteins from Thermotoga maritima. Genes Cells 8: 801-810.
  • Russell NJ, Evans RI, Ter Steeg PF, Hellemons J, Verheul A, Abee T (1995) Membranes as a target for stress adaptation. Int J Food Microbiol 28: 255-261.
  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234: 779-815.
  • Sambrook J, Russell D (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press.
  • Sasin JM, Bujnicki JM (2004) COLORADO3D, a web server for the visual analysis of protein structures. Nucleic Acids Res 32 (Web server issue): W586-W589.
  • Schindelin H, Marahiel MA, Heinemann U (1993) Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature 364: 164-168.
  • Schindelin H, Jiang W, Inouye M, Heinemann U (1994) Crystal structure of CspA the major cold shock protein of Escherichia coli. Proc Natl Acad Sci USA 91: 5119-5123.
  • Schindler T, Perl D, Graumann P, Sieber V, Marahiel MA, Schmid FX (1998) Surface-exposed phenylalanines in the RNP1/RNP2 motif stabilize the cold-shock protein CspB from Bacillus subtilis. Proteins 30: 401-406.
  • Schindler T, Graumann PL, Perl D, Ma S, Schmid FX, Marahiel MA (1999) The family of cold shock proteins of Bacillus subtilis. Stability and dynamics in vitro and in vivo. J Biol Chem 274: 3407-3413.
  • Schröder K, Graumann P, Schnuchel A, Holak TA, Marahiel MA (1995) Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif. Mol Microbiol 16: 699-708.
  • Schuchel A, Wiltscheck R, Czisch M, Herrel M, Willimsky G, Graumann PL, Marahiel MA, Holak TA (1993) Structure in solution of the major cold-shock protein from Bacillus subtilis. Nature 364: 169-171.
  • Uppal S, Akkipeddi VS, Jawali N (2008) Posttranscriptional regulation of cspE in Escherichia coli: involvement of the short 5'-untranslated region. FEMS Microbiol Lett 279: 83-91.
  • Wang N, Yamanaka K, Inouye M (1999) CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J Bacteriol 181: 1603-1609.
  • Wang Q-F, Miao J-L, Hou Y-H, Ding Y, Li G-Y (2006) Expression of CspA and GST by Antarctic psychrophilic bacterium Colwellia sp. NJ341 at near-freezing temperature. J Microbiol Biotechnol 22: 311-316.
  • Willimsky G, Bang H, Fischer G, Marahiel MA (1992) Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. J Bacteriol 174: 6326-6335.
  • Zeeb M, Balbach J (2003) Single-stranded DNA binding of the cold shock protein CspB from Bacillus subtilis: NMR mapping and mutational characterization. Protein Sci 12: 112-123.
  • Zeeb M, Max KEA, Weininger U, Löw C, Sticht H, Balbach J (2006) Recognition of T-rich single-stranded DNA by the cold shock protein Bs-CspB in solution. Nucleic Acids Res 34: 4561-4571.
  • Yamanaka K, Fang L, Inouye M (1998) The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol Microbiol 27: 247-255.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.