PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 56 | 3 | 393-404
Article title

Endothelium as target for large-conductance calcium-activated potassium channel openers

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The endothelium is a highly active organ responsible for vasculatory tone and structure, angiogenesis, as well as hemodynamic, humoral, and inflammatory responses. The endothelium is constantly exposed to blood flow, sheer stress and tension. Endothelial cells are present as a vasculature in every tissue of the body and react to and control its microenvironment. A variety of ion channels are present in the plasma membranes of endothelial cells. These include potassium channels such as inwardly rectifying potassium (Kir) channels, voltage-dependent (Kv) channels, ATP-regulated potassium (KATP) channels and three types of calcium-activated potassium channels (KCa), the large (BKCa), intermediate (IKCa), and small (SKCa) -conductance potassium channels. Potassium current plays a critical role in action potentials in excitable cells, in setting the resting membrane potential, and in regulating neurotransmitter release. Mitochondrial isoforms of potassium channel contribute to the cytoprotection of endothelial cells. Prominent among potassium channels are families of calcium-activated potassium channels, and especially large-conductance calcium-activated potassium channels. The modulation of BKCa channels, which are voltage- and calcium-dependent, has been intensively studied. The BKCa channels show large expression dynamics in endothelial cells and tissue-specific expression of large numbers of alternatively spliced isoforms. In this review, a few examples of the modulatory mechanisms and physiological consequences of the expression of BKCa channels are discussed in relation to potential targets for pharmacological intervention.
Publisher

Year
Volume
56
Issue
3
Pages
393-404
Physical description
Dates
published
2009
received
2009-06-22
revised
2009-08-24
accepted
2009-09-11
(unknown)
2009-09-14
Contributors
  • Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warszawa, Poland
References
  • Abderrahmane A, Salvail D, Dumoulin M, Garon J, Cadieux A, Rousseau E (1998) Direct activation of KCa channel in airway smooth muscle by nitric oxide: Involvement of a nitrothiosylation mechanism? Am J Respir Cell Mol Biol 19: 485-497.
  • Abraham NG, Kappas A (2008) Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev 60: 79-127.
  • Abrahamsson T, Brandt U, Marklund SL, Sjoqvist PO (1992) Vascular bound recombinant extracellular superoxide dismutase type C protects against the detrimental effects of superoxide radicals on endothelium-dependent arterial relaxation. Circ Res 70: 264-271.
  • Aghajanian A, Wittchen ES, Allingham MJ, Garrett TA, Burridge K (2008) Endothelial cell junctions and the regulation of vascular permeability and leukocyte transmigration. J Thromb Haemost 6: 1453-1460.
  • Ahern GP, Hsu SF, Jackson MB (1999) Direct actions of nitric oxide on rat neurohypophysial K+ channels. J Physiol 520: 165-176.
  • Aird WC (2003) Endothelial cell heterogeneity. Crit Care Med 31: S221-230.
  • Aird WC (2007a) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100: 158-173.
  • Aird WC (2007b) Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 100: 174-190.
  • Aird WC (2009) Molecular heterogeneity of tumor endothelium. Cell Tissue Res 335: 271-281.
  • Alioua A, Lu R, Kumar Y, Eghbali M, Kundu P, Toro L, Enrico S (2008) Slo1 Caveolin-binding motif, a mechanism of caveolin-1-Slo1 interaction regulating Slo1 surface expression. J Biol Chem 283: 4808-4817.
  • Barakat AI, Leaver EV, Pappone PA, Davies PF (1999) A flow-activated chloride-selective membrane current in vascular endothelial cells. Circ Res 85: 820-828.
  • Basuroy S, Bhattacharya S, Leffler CW, Parfenova H (2009) Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-α in cerebral vascular endothelial cells. Am J Physiol Cell Physiol 296: C422-C432.
  • Bentzen BH, Nardi A, Calloe K, Madsen LS, Olesen SP, Grunnet M (2007) The small molecule NS11021 is a potent and specific activator of Ca2+-activated big-conductance K+channels. Mol Pharmacol 72: 1033-1044.
  • Beresewicz A, Czarnowska E, Maczewski M (1998) Ischemic preconditioning and superoxide dismutase protect against endothelial dysfunction and endothelium glycocalyx disruption in the postischemic guinea-pig hearts. Mol Cell Biochem 186: 87-97.
  • Berkefeld H, Sailer CA, Bildl W, Rohde V, Thumfart JO, Eble S, Klugbauer N, Reisinger E, Bischofberger J, Oliver D, Knaus HG, Schulte U, Fakler B (2006) BKCa-Cav channel complexes mediate rapid and localized Ca2+-activated K+ signaling. Science 314: 615-620.
  • Bolognesi M, Sacerdoti D, Piva A, Di Pascoli M, Zampieri F, Quarta S, Motterlini R, Angeli P, Merkel C, Gatta A (2007) Carbon monoxide-mediated activation of large-conductance calcium-activated potassium channels contributes to mesenteric vasodilatation in cirrhotic rats. J Pharmacol Exp Ther 321: 187-194.
  • Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368: 850.
  • Brakemeier S, Eichler I, Knorr A, Fassheber T, Kohler R, Hoyer J (2003) Modulation of Ca2+-activated K+ channel in renal artery endothelium in situ by nitric oxide and reactive oxygen species. Kidney Int 64: 199-207.
  • Brenner R, Jegla TJ, Wickenden A, Liu Y, Aldrich RW (2000) Cloning and functional characterization of novel large conductance calcium-activated potassium channel β subunits, hKCNMB3 and hKCNMB4. J Biol Chem 275: 6453-6461.
  • Brown MD, Egginton S, Hudlicka O, Zhou AL (1996) Appearance of the capillary endothelial glycocalyx in chronically stimulated rat skeletal muscles in relation to angiogenesis. Exp Physiol 81: 1043-1046.
  • Cai S, Sauve R (1997) Effects of thiol-modifying agents on a K(Ca2+) channel of intermediate conductance in bovine aortic endothelial cells. J Membr Biol 158: 147-158.
  • Campbell WB, Falck JR (2007) Arachidonic acid metabolites as endothelium-derived hyperpolarizing factors. Hypertension 49: 590-596.
  • Carter TD, Hallam TJ, Cusack NJ, Pearson JD (1988) Regulation of P2y-purinoceptor-mediated prostacyclin release from human endothelial cells by cytoplasmic calcium concentration. Br J Pharmacol 95: 1181-1190.
  • Cayabyab FS, Daniel EE (1995) K+ channel opening mediates hyperpolarisations by nitric oxide donors and IJPs in opossum esophagus. Am J Physiol Gastrointest Liver Physiol 268: G831-842.
  • Chauhan SD, Nilsson H, Ahluwalia A, Hobbs AJ (2003) Release of C-type natriuretic peptide accounts for the biological activity of endothelium-derived hyperpolarizing factor. Proc Nat Acad Sci USA 100: 1426-1431.
  • Chen L, Tian L, MacDonald SHF, McClafferty H, Hammond MSL, Huibant J-M, Ruth P, Knaus H-G, Shipston MJ (2005) Functionally diverse complement of large conductance calcium- and voltage-activated potassium channel (BK) α-subunits generated from a single site of splicing. J Biol Chem 280: 33599-33609.
  • Chiang HT, Wu SN (2001) Inhibition of large-conductance calcium-activated potassium channel by 2-methoxyestradiol in cultured vascular endothelial (HUV-EC-C) cells. J Membr Biol 182: 203-212.
  • Czarnowska E, Karwatowska-Prokopczuk E (1995) Ultrastructural demonstration of endothelial glycocalyx disruption in the reperfused rat heart. Involvement of oxygen free radicals. Basic Res Cardiol 90: 357-364.
  • De Backer O, Elinck E, Blanckaert B, Leybaert L, Motterlini R, Lefebvre RA (2009) Water-soluble CO-releasing molecules reduce the development of postoperative ileus via modulation of MAPK/HO-1 signalling and reduction of oxidative stress. Gut 58: 347-356.
  • De Wit C, Hoepfl B, Wolfle SE (2006) Endothelial mediators and communication through vascular gap junctions. Biol Chem 387: 3-9.
  • De Wit C, Wolfle SE (2007) EDHF and gap junctions: important regulators of vascular tone within the microcirculation. Curr Pharm Biotechnol 8: 11-25.
  • Denson DD, Li J, Eaton DC (2006) Co-localization of the α-subunit of BK-channels and c-PLA2 in GH3 cells. Biochem Biophys Res Commun 350: 39-49.
  • Dhanasekaran A, Bodiga S, Gruenloh S, Gao Y, Dunn L, Falck JR, Buonaccorsi JN, Medhora M, Jacobs ER (2009) 20-HETE increases survival and decreases apoptosis in pulmonary arteries and pulmonary artery endothelial cells. Am J Physiol Heart Circ Physiol 296: H777-786.
  • DiChiara TJ, Reinhart PH (1995) Distinct effects of Ca2+ and voltage on the activation and deactivation of cloned Ca2+-activated K+ channels. J Physiol 489 (Pt 2): 403-418.
  • DiChiara TJ, Reinhart PH (1997) Redox modulation of hslo Ca2+-activated K+ channels. J Neurosci 17: 4942-4955.
  • Dietmar V (2007) Adhesion and signaling molecules controlling the transmigration of leukocytes through endothelium. Immunol Rev 218: 178-196.
  • Dong DL, Zhang Y, Lin DH, Chen J, Patschan S, Goligorsky MS, Nasjletti A, Yang BF, Wang WH (2007) Carbon monoxide stimulates the Ca2+-activated big conductance K channels in cultured human endothelial cells. Hypertension 50: 643-651.
  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82: 47-95.
  • Du W, Bautista JF, Yang H, Diez-Sampedro A, You SA, Wang L, Kotagal P, Luders HO, Shi J, Cui J, Richerson GB, Wang QK (2005) Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 37: 733-738.
  • Dulak J, Deshane J, Jozkowicz A, Agarwal A (2008) Heme oxygenase-1 and carbon monoxide in vascular pathobiology: focus on angiogenesis. Circulation 117: 231-241.
  • Ellis A, Triggle CR (2003) Endothelium-derived reactive oxygen species: their relationship to endothelium-dependent hyperpolarisation and vascular tone. Can J Physiol Pharmacol 81: 1013-1028.
  • Feletou M, Vanhoutte PM (2006a) Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 291: H985-1002.
  • Feletou M, Vanhoutte PM (2006b) Endothelium-derived hyperpolarizing factor: where are we now? Arterioscler Thromb Vasc Biol 26: 1215-1225.
  • Ferran C (2006) Protective genes in the vessel wall: Modulators of graft survival and function. Transplantation 82: S36-40.
  • Frieden M, Graier WF (2000) Subplasmalemmal ryanodine-sensitive Ca2+ release contributes to Ca2+-dependent K+ channel activation in a human umbilical vein endothelial cell line. J Physiol 524 (Pt 3): 715-724.
  • Frieden M, Malli R, Samardzija M, Demaurex N, Graier WF (2002) Subplasmalemmal endoplasmic reticulum controls KCa channel activity upon stimulation with a moderate histamine concentration in a human umbilical vein endothelial cell line. J Physiol 540: 73-84.
  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373-376.
  • Galley HF, Webster NR (2004) Physiology of the endothelium. Br J Anaesth 93: 105-113.
  • Gan G, Yi H, Chen M, Sun L, Li W, Wu Y, Ding J (2008) Structural basis for toxin resistance of β4-associated calcium-activated potassium (BK) channels. J Biol Chem 283: 24177-24184.
  • Gorman AL, Thomas MV (1980) Potassium conductance and internal calcium accumulation in a molluscan neurone. J Physiol 308: 287-313.
  • Gruetter CA, Kadowitz PJ, Ignarro LJ (1981) Methylene blue inhibits coronary arterial relaxation and guanylate cyclase activation by nitroglycerin, sodium nitrite, and amyl nitrite. Can J Physiol Pharmacol 59: 150-156.
  • Gupta MP, Ober MD, Patterson C, Al-Hassani M, Natarajan V, Hart CM (2001) Nitric oxide attenuates H2O2-induced endothelial barrier dysfunction: mechanisms of protection. Am J Physiol Lung Cell Mol Physiol 280: L116-126.
  • Gutterman DD, Miura H, Liu Y (2005) Redox modulation of vascular tone: focus of potassium channel mechanisms of dilation. Arterioscler Thromb Vasc Biol 25: 671-678.
  • Haburcak M, Wei L, Viana F, Prenen J, Droogmans G, Nilius B (1997) Calcium-activated potassium channels in cultured human endothelial cells are not directly modulated by nitric oxide. Cell Calcium 21: 291-300.
  • Heyer CB, Lux HD (1976) Control of the delayed outward potassium currents in bursting pace-maker neurones of the snail, Helix pomatia. J Physiol 262: 349-382.
  • Higgins JJ, Hao J, Kosofsky BE, Rajadhyaksha AM (2008) Dysregulation of large-conductance Ca2+-activated K+ channel expression in nonsyndromal mental retardation due to a cereblon p.R419X mutation. Neurogenetics 9: 219-223.
  • Hobson B, Denekamp J (1984) Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br J Cancer 49: 405-413.
  • Hou S, Xu R, Heinemann SH, Hoshi T (2008) The RCK1 high-affinity Ca2+ sensor confers carbon monoxide sensitivity to Slo1 BK channels. Proc Natl Acad Sci USA 105: 4039-4043.
  • Hsieh PC, Davis ME, Lisowski LK, Lee RT (2006) Endothelial-cardiomyocyte interactions in cardiac development and repair. Annu Rev Physiol 68: 51-66.
  • Isacson CK, Lu Q, Karas RH, Cox DH (2007) RACK1 is a BKCa channel binding protein. Am J Physiol Cell Physiol 292: C1459-1466.
  • Jaggar JH, Li A, Parfenova H, Liu J, Umstot ES, Dopico AM, Leffler CW (2005) Heme is a carbon monoxide receptor for large-conductance Ca2+-activated K+ channels. Circ Res 97: 805-812.
  • Kamouchi M, Trouet D, De Greef C, Droogmans G, Eggermont J, Nilius B (1997) Functional effects of expression of hslo Ca2+ activated K+ channels in cultured macrovascular endothelial cells. Cell Calcium 22: 497-506.
  • Kathiresan T, Harvey M, Orchard S, Sakai Y, Sokolowski B (2009) A protein interaction network for the large conductance Ca2+-activated K+ channel in the mouse cochlea. Mol Cell Proteomics 8: 1972-1987.
  • Kim EY, Alvarez-Baron CP, Dryer SE (2009) Canonical transient receptor potential channel (TRPC)3 and TRPC6 associate with large-conductance Ca2+-activated K+ (BKCa) channels: role in BKCa trafficking to the surface of cultured podocytes. Mol Pharmacol 75: 466-477.
  • Kim EY, Choi KJ, Dryer SE (2008) Nephrin binds to the COOH terminus of a large-conductance Ca2+-activated K+ channel isoform and regulates its expression on the cell surface. Am J Physiol Renal Physiol 295: F235-246.
  • Kim HP, Ryter SW, Choi AM (2006) CO as a cellular signaling molecule. Annu Rev Pharmacol Toxicol 46: 411-449.
  • Knaus HG, Eberhart A, Glossmann H, Munujos P, Kaczorowski GJ, Garcia ML (1994a) Pharmacology and structure of high conductance calcium-activated potassium channels. Cell Signal 6: 861-870.
  • Knaus HG, Folander K, Garcia-Calvo M, Garcia ML, Kaczorowski GJ, Smith M, Swanson R (1994b) Primary sequence and immunological characterization of beta-subunit of high conductance Ca2+-activated K+ channel from smooth muscle. J Biol Chem 269: 17274-17278.
  • Korovkina VP, Stamnes SJ, Brainard AM, England SK (2009) Nardilysin convertase regulates the function of the maxi-K channel isoform mK44 in human myometrium. Am J Physiol Cell Physiol 296: C433-440.
  • Kunzelmann K (2005) Ion channels and cancer. J Membr Biol 205: 159-173.
  • Lancel S, Hassoun SM, Favory R, Decoster B, Motterlini R, Neviere R (2009) Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. J Pharmacol Exp Ther 329: 641-648.
  • Lang RJ, Harvey JR, McPhee GJ, Klemm MF (2000) Nitric oxide and thiol reagent modulation of Ca2+-activated K+ (BKCa) channels in myocytes of the guinea-pig taenia caeci. J Physiol 525 Pt 2: 363-376.
  • Langenkamp E, Molema G (2009) Microvascular endothelial cell heterogeneity: general concepts and pharmacological consequences for anti-angiogenic therapy of cancer. Cell Tissue Res 335: 205-222.
  • Langer P, Grunder S, Rusch A (2003) Expression of Ca2+-activated BK channel mRNA and its splice variants in the rat cochlea. J Comp Neurol 455: 198-209.
  • Lantoine F, Iouzalen L, Devynck MA, Millanvoye-Van Brussel E, David-Dufilho M (1998) Nitric oxide production in human endothelial cells stimulated by histamine requires Ca2+ influx. Biochem J 330: 695-699.
  • Larsen BT, Zhang DX, Gutterman DD (2007) Epoxyeicosatrienoic acids, TRP channels, and intracellular Ca2+ in the vasculature: an endothelium-derived endothelium-hyperpolarizing factor? Arterioscler Thromb Vasc Biol 27: 2496-2498.
  • Latorre R, Brauchi S (2006) Large conductance Ca2+-activated K+ (BK) channel: activation by Ca2+ and voltage. Biol Res 39: 385-401.
  • Lee US, Cui J (2009) β subunit-specific modulations of BK channel function by a mutation associated with epilepsy and dyskinesia. J Physiol 587: 1481-1498.
  • Levy DI, Wanderling S, Biemesderfer D, Goldstein SA (2008) MiRP3 acts as an accessory subunit with the BK potassium channel. Am J Physiol Renal Physiol 295: F380-387.
  • Li A, Xi Q, Umstot ES, Bellner L, Schwartzman ML, Jaggar JH, Leffler CW (2008a) Astrocyte-derived CO is a diffusible messenger that mediates glutamate-induced cerebral arteriolar dilation by activating smooth muscle cell KCa channels. Circ Res 102: 234-241.
  • Li H, Cui H, Kundu TK, Alzawahra W, Zweier JL (2008b) Nitric oxide production from nitrite occurs primarily in tissues not in the blood: Critical role of xanthine oxidase and aldehyde oxidase. J Biol Chem 283: 17855-17863.
  • Liu G, Zakharov SI, Yang L, Wu RS, Deng S-X, Landry DW, Karlin A, Marx SO (2008) Locations of the β1 transmembrane helices in the BK potassium channel. Proc Natl Acad Sci USA 105: 10727-10732.
  • Liu Y, Gutterman DD (2002) Oxidative stress and potassium channel function. Clin Exp Pharmacol Physiol 29: 305-311.
  • Ma D, Nakata T, Zhang G, Hoshi T, Li M, Shikano S (2007) Differential trafficking of carboxyl isoforms of Ca2+-gated (Slo1) potassium channels. FEBS Lett 581: 1000-1008.
  • Magleby KL (2003) Gating mechanism of BK (Slo1) channels: so near, yet so far. J Gen Physiol 121: 81-96.
  • Martin GE, Hendrickson LM, Penta KL, Friesen RM, Pietrzykowski AZ, Tapper AR, Treistman SN (2008) Identification of a BK channel auxiliary protein controlling molecular and behavioral tolerance to alcohol. Proc Nat Acad Sci USA 105: 17543-17548.
  • Masini E, Vannacci A, Failli P, Mastroianni R, Giannini L, Vinci MC, Uliva C, Motterlini R, Mannaioni PF (2008) A carbon monoxide-releasing molecule (CORM-3) abrogates polymorphonuclear granulocyte-induced activation of endothelial cells and mast cells. Faseb J 22: 3380-3388.
  • Matalon S, Hardiman KM, Jain L, Eaton DC, Kotlikoff M, Eu JP, Sun J, Meissner G, Stamler JS (2003) Regulation of ion channel structure and function by reactive oxygen-nitrogen species. Am J Physiol Lung Cell Mol Physiol 285: L1184-1189.
  • McCartney CE, McClafferty H, Huibant JM, Rowan EG, Shipston MJ, Rowe IC (2005) A cysteine-rich motif confers hypoxia sensitivity to mammalian large conductance voltage- and Ca-activated K (BK) channel α-subunits. Proc Natl Acad Sci USA 102: 17870-17876.
  • McManus OB, Helms LM, Pallanck L, Ganetzky B, Swanson R, Leonard RJ (1995) Functional role of the β subunit of high conductance calcium-activated potassium channels. Neuron 14: 645-650.
  • Medhora M, Chen Y, Gruenloh S, Harland D, Bodiga S, Zielonka J, Gebremedhin D, Gao Y, Falck JR, Anjaiah S, Jacobs ER (2008) 20-HETE increases superoxide production and activates NAPDH oxidase in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 294: L902-911.
  • Meera P, Wallner M, Toro L (2000) A neuronal β subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin. Proc Natl Acad Sci USA 97: 5562-5567.
  • Mehrke G, Daut J (1990) The electrical response of cultured guinea-pig coronary endothelial cells to endothelium-dependent vasodilators. J Physiol 430: 251-272.
  • Mistry DK, Garland CJ (1998) Nitric oxide (NO)-induced activation of large conductance Ca2+-dependent K+ channels (BKCa) in smooth muscle cells isolated from the rat mesenteric artery. Br J Pharmacol 124: 1131-1140.
  • Morimoto T, Sakamoto K, Sade H, Ohya S, Muraki K, Imaizumi Y (2007) Voltage-sensitive oxonol dyes are novel large-conductance Ca2+-activated K+ channel activators selective for β1 and β4 but not for β2 subunits. Mol Pharmacol 71: 1075-1088.
  • Nardi A, Olesen SP (2008) BK channel modulators: a comprehensive overview. Curr Med Chem 15: 1126-1146.
  • Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268: C799-822.
  • Nielsen T, Burgdorf KS, Grarup N, Borch-Johnsen K, Hansen T, Jorgensen T, Pedersen O, Andersen G (2008) The KCNMB1 Glu65Lys polymorphism associates with reduced systolic and diastolic blood pressure in the Inter99 study of 5729 Danes. J Hypertens 26: 2142-2146.
  • Nilius B, Droogmans G (2001) Ion channels and their functional role in vascular endothelium. Physiol Rev 81: 1415-1459.
  • Nilius B, Viana F, Droogmans G (1997) Ion channels in vascular endothelium. Annu Rev Physiol 59: 145-170.
  • Oelze M, Warnholtz A, Faulhaber J, Wenzel P, Kleschyov AL, Coldewey M, Hink U, Pongs O, Fleming I, Wassmann S, Meinertz T, Ehmke H, Daiber A, Munzel T (2006) NADPH oxidase accounts for enhanced superoxide production and impaired endothelium-dependent smooth muscle relaxation in BKβ1-/- mice. Arterioscler Thromb Vasc Biol 26: 1753-1759.
  • Orio P, Rojas P, Ferreira G, Latorre R (2002) New disguises for an old channel: MaxiK channel β-subunits. News Physiol Sci 17: 156-161.
  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87: 315-424.
  • Pallanck L, Ganetzky B (1994) Cloning and characterization of human and mouse homologs of the Drosophila calcium-activated potassium channel gene, slowpoke. Hum Mol Genet 3: 1239-1243.
  • Pallotta BS, Magleby KL, Barrett JN (1981) Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture. Nature 293: 471-474.
  • Papassotiriou J, Kohler R, Prenen J, Krause H, Akbar M, Eggermont J, Paul M, Distler A, Nilius B, Hoyer J (2000) Endothelial K+ channel lacks the Ca2+ sensitivity-regulating β subunit. FASEB J 14: 885-894.
  • Pasqualini R, Arap W (2002) Profiling the molecular diversity of blood vessels. Cold Spring Harb Symp Quant Biol 67: 223-225.
  • Piwonska M, Wilczek E, Szewczyk A, Wilczynski GM (2008) Differential distribution of Ca2+-activated potassium channel β4 subunit in rat brain: immunolocalization in neuronal mitochondria. Neuroscience 153: 446-460.
  • Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflugers Arch 440: 653-666.
  • Ramanathan K, Michael TH, Jiang GJ, Hiel H, Fuchs PA (1999) A molecular mechanism for electrical tuning of cochlear hair cells. Science 283: 215-217.
  • Rodella L, Lamon BD, Rezzani R, Sangras B, Goodman AI, Falck JR, Abraham NG (2006) Carbon monoxide and biliverdin prevent endothelial cell sloughing in rats with type I diabetes. Free Radic Biol Med 40: 2198-2205.
  • Romanenko VG, Roser KS, Melvin JE, Begenisich T (2009) The role of cell cholesterol and the cytoskeleton in the interaction between IK1 and maxi-K channels. Am J Physiol Cell Physiol 296: C878-888.
  • Sandow SL, Grayson TH (2009) Limits of isolation and culture: intact vascular endothelium and BKCa. Am J Physiol Heart Circ Physiol 297: H1-7.
  • Sandow SL, Gzik DJ, Lee RM (2009a) Arterial internal elastic lamina holes: relationship to function? J Anat 214: 258-266.
  • Sandow SL, Haddock RE, Hill CE, Chadha PS, Kerr PM, Welsh DG, Plane F (2009b) What's where and why at a vascular myoendothelial microdomain signalling complex. Clin Exp Pharmacol Physiol 36: 67-76.
  • Santarelli LC, Chen J, Heinemann SH, Hoshi T (2004) The β1 subunit enhances oxidative regulation of large-conductance calcium-activated K+ channels. J Gen Physiol 124: 357-370.
  • Sausbier M, Hu H, Arntz C, Feil S, Kamm S, Adelsberger H, Sausbier U, Sailer CA, Feil R, Hofmann F, Korth M, Shipston MJ, Knaus HG, Wolfer DP, Pedroarena CM, Storm JF, Ruth P (2004) Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency Proc Natl Acad Sci USA 101: 9474-9478.
  • Schmidt VJ, Wolfle SE, Boettcher M, de Wit C (2008) Gap junctions synchronize vascular tone within the microcirculation. Pharmacol Rep 60: 68-74.
  • Shibata T, Misawa N, Takeo C, Saeki N, Saito Y, Tatsuno I (2005) Analysis of genes dominantly expressed in rat cerebral endothelial cells using suppression subtractive hybridization. J Atheroscler Thromb 12: 330-337.
  • Shin D, Anderson DJ (2005) Isolation of arterial-specific genes by subtractive hybridization reveals molecular heterogeneity among arterial endothelial cells. Dev Dyn 233: 1589-1604.
  • Skinner MP, Lucas CM, Burns GF, Chesterman CN, Berndt MC (1991) GMP-140 binding to neutrophils is inhibited by sulfated glycans. J Biol Chem 266: 5371-5374.
  • Tanaka Y, Koike K, Toro L (2004) MaxiK channel roles in blood vessel relaxations induced by endothelium-derived relaxing factors and their molecular mechanisms. J Smooth Muscle Res 40: 125-153.
  • Tanaka Y, Meera P, Song M, Knaus HG, Toro L (1997) Molecular constituents of maxi KCa channels in human coronary smooth muscle: predominant α +β subunit complexes. J Physiol 502 (Pt 3): 545-557.
  • Taylor MS, Bonev AD, Gross TP, Eckman DM, Brayden JE, Bond CT, Adelman JP, Nelson MT (2003) Altered expression of small-conductance Ca2+-activated K+ (SK3) channels modulates arterial tone and blood pressure. Circ Res 93: 124-131.
  • Toro B, Cox N, Wilson RJ, Garrido-Sanabria E, Stefani E, Toro L, Zarei MM 2006) KCNMB1 regulates surface expression of a voltage and Ca2+-activated K+ channel via endocytic trafficking signals. Neuroscience 142: 661-669.
  • Torres YP, Morera FJ, Carvacho I, Latorre R (2007) A marriage of convenience: β-subunits and voltage-dependent K+ channels. J Biol Chem 282: 24485-24489.
  • Tran QK, Watanabe H (2006) Calcium signalling in the endothelium. Handb Exp Pharmacol 176: 145-187.
  • True AL, Olive M, Boehm M, San H, Westrick RJ, Raghavachari N, Xu X, Lynn EG, Sack MN, Munson PJ, Gladwin MT, Nabel EG (2007) Heme oxygenase-1 deficiency accelerates formation of arterial thrombosis through oxidative damage to the endothelium, which is rescued by inhaled carbon monoxide. Circ Res 101: 893-901.
  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552: 335-344.
  • Vaithianathan T, Bukiya A, Liu J, Liu P, Asuncion-Chin M, Fan Z, Dopico A (2008) Direct regulation of BK channels by phosphatidylinositol 4,5-bisphosphate as a novel signaling pathway. J Gen Physiol 132: 13-28.
  • Vanhoutte PM, Shimokawa H, Tang EH, FeletouM (2009) Endothelial dysfunction and vascular disease. Acta Physiologica 196: 193-222.
  • Wang XL, Ye D, Peterson TE, Cao S, Shah VH, Katusic ZS, Sieck GC, Lee H (2005) Caveolae targeting and regulation of large conductance Ca2+-activated K+ channels in vascular endothelial cells. J Biol Chem 280: 11656-11664.
  • Wang YW, Ding JP, Xia XM, Lingle CJ (2002) Consequences of the stoichiometry of Slo1 alpha and auxiliary beta subunits on functional properties of large-conductance Ca2+-activated K+ channels. J Neurosci 22: 1550-1561.
  • Wang ZW, Nara M, Wang YX, Kotlikoff MI (1997) Redox regulation of large conductance Ca2+-activated K+ channels in smooth muscle cells. J Gen Physiol 110: 35-44.
  • Watson MJ, Lang RJ, Bywater RA, Taylor GS (1996) Characterization of the membrane conductance changes underlying the apamin-resistant NANC inhibitory junction potential in the guinea-pig proximal and distal colon. J Auton Nerv Syst 60: 31-42.
  • Weaver AK, Olsen ML, McFerrin MB, Sontheimer H (2007) BK channels are linked to inositol 1,4,5-triphosphate receptors via lipid rafts: a novel mechanism for coupling [Ca(2+)](i) to ion channel activation. J Biol Chem 282: 31558-31568.
  • Williams SE, Brazier SP, Baban N, Telezhkin V, Muller CT, Riccardi D, Kemp PJ (2008) A structural motif in the C-terminal tail of slo1 confers carbon monoxide sensitivity to human BK Ca channels. Pflugers Arch 456: 561-572.
  • Williams SE, Wootton P, Mason HS, Bould J, Iles DE, Riccardi D, Peers C, Kemp PJ (2004) Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science 306: 2093-2097.
  • Wittchen ES (2009) Endothelial signaling in paracellular and transcellular leukocyte transmigration. Front Biosci 14: 2522-2545.
  • Wolin MS (2009) Reactive oxygen species and the control of vascular function. Am J Physiol Heart Circ Physiol 296: H539-549.
  • Wrzosek A, Lukasiak A, Gwozdz P, Malinska D, Kozlovski VI, Szewczyk A, Chlopicki S, Dolowy K (2009) Large-conductance K+ channel opener CGS7184 as a regulator of endothelial cell function. Eur J Pharmacol 602: 105-111.
  • Wu SN, Wu AZ, Lin MW (2006) Pharmacological roles of the large-conductance calcium-activated potassium channel. Curr Top Med Chem 6: 1025-1030.
  • Yu JY, Upadhyaya AB, Atkinson NS (2006) Tissue-specific alternative splicing of BK channel transcripts in Drosophila. Genes Brain Behav 5: 329-339.
  • Zarei MM, Song M, Wilson RJ, Cox N, Colom LV, Knaus HG, Stefani E, Toro L (2007) Endocytic trafficking signals in KCNMB2 regulate surface expression of a large conductance voltage and Ca2+-activated K+ channel. Neuroscience 147: 80-89.
  • Zhang Z, Zeng X-H, Xia X-M, Lingle CJ (2009) N-terminal inactivation domains of β subunits are protected from trypsin digestion by binding within the antechamber of BK channels. J Gen Physiol 133: 263-282.
  • Zou S, Jha S, Kim EY, Dryer SE (2008) A novel actin-binding domain on Slo1 calcium-activated potassium channels is necessary for their expression in the plasma membrane. Mol Pharmacol 73: 359-368.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv56p393kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.