PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 56 | 3 | 385-392
Article title

Potassium channels in brain mitochondria

Content
Title variants
Languages of publication
EN
Abstracts
EN
Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca+ ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoKATP) channel, large conductance Ca2+-regulated (mitoBKCa) channel, intermediate conductance Ca2+-regulated (mitoIKCa) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoKATP channel or mitoBKCa channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBKCa channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBKCa channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify their molecular correlates.
Keywords
Year
Volume
56
Issue
3
Pages
385-392
Physical description
Dates
published
2009
received
2009-06-20
revised
2009-08-03
accepted
2009-09-15
(unknown)
2009-09-17
References
  • Ardehali H, Chen Z, Ko Y, Mejia-Alvarez R, Marban E (2004) Multiprotein complex containing succinate dehydrogenase confers mitchondrial ATP-sensitive K+ channel activity. Proc Natl Acad Sci USA 101: 11880-11885.
  • Bajgar R, Seetharaman S, Kowaltowski AJ, Garlid KD, Paucek P (2001) Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain. J Biol Chem 276: 33369-33374.
  • Bednarczyk P, Kicinska A, Kominkova V, Ondrias K, Dolowy K, Szewczyk A (2004) Quinine inhibits mitochondrial ATP-regulated potassium channel from bovine heart. J Membr Biol 199: 63-72.
  • Bednarczyk P, Dolowy K, Szewczyk A (2005) Matrix Mg2+ regulates mitochondrial ATP-dependent potassium channel from heart. FEBS Lett 579: 1625-1632.
  • Bednarczyk P, Barker GD, Halestrap AP (2008a) Determination of the rate of K+ movement through potassium channels in isolated rat heart and liver mitochondria. Biochim Biophys Acta 1777: 540-548.
  • Bednarczyk P, Dołowy K, Szewczyk A (2008b) New properties of mitochondrial ATP-regulated potassium channels. J Bioenerg Biomembr 40: 325-335.
  • Busija DW, Gaspar T, Domoki F, Katakam PV, Bari F (2008) Mitochondrial-mediated suppression of ROS production upon exposure of neurons to lethal stress: mitochondrial targeted preconditioning. Adv Drug Deliv Rev 60: 1471-1417.
  • Butler A, Tsunoda S, McCobb DP, Wei A, Salkoff L (1993) mSlo, a complex mouse gene encoding 'maxi' calcium-activated potassium channels. Science 261: 221-224.
  • Cancherini DV, Trabuco LG, Reboucas NA, Kowaltowski AJ (2003) ATP-sensitive K+ channels in renal mitochondria. Am J Physiol Renal Physiol 285: F1291-F1296.
  • Chandy KG, Wulff H, Beeton C, Pennington M, Gutman GA, Cahalan MD (2004) K+ channels as targets for specific immunomodulation. Trends Pharmacol Sci 25: 280-289.
  • Chemin J, Girard C, Duprat F, Lesage F, Romey G, Lazdunski M (2003) Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K+ channels. EMBO J 22: 5403-5411.
  • Cheng Y, Gu XQ, Bednarczyk P, Wiedemann FR, Haddad GG, Siemen D (2008) Hypoxia increases activity of the BK-channel in the inner mitochondrial membrane and reduces activity of the permeability transition pore. Cell Physiol Biochem 22: 127-136.
  • Dahlem YA, Horn TF, Buntinas L, Gonoi T, Wolf G, Siemen D (2004) The human mitochondrial KATP channel is modulated by calcium and nitric oxide: a patch-clamp approach. Biochim Biophys Acta 1656: 46-56.
  • Debska G, Kicinska A, Skalska J, Szewczyk A, May R, Elger CE, Kunz WS (2002) Opening of potassium channels modulates mitochondrial function in rat skeletal muscle. Biochim Biophys Acta 1556: 97-105.
  • Debska G, May R, Kicinska A, Szewczyk A, Elger CE, Kunz WS (2001) Potassium channel openers depolarize hippocampal mitochondria. Brain Res 892: 42-50.
  • De Marchi U, Sassi N, Fioretti B, Catacuzzeno L, Cereghetti GM, Szabo I, Zoratti M (2009) Intermediate conductance Ca2+-activated potassium channel (KCa3.1) in the inner mitochondrial membrane of human colon cancer cells. Cell Calcium 45: 509-516.
  • Gaspar T, Snipes JA, Busija AR, Kis B, Domoki F, Bari F, Busija DW (2008) ROS-independent preconditioning in neurons via activation of mitoKATP channels by BMS-191095. J Cereb Blood Flow Metab 28: 1090-1103.
  • Ghatta S, Nimmagadda D, Xu X, O'Rourke ST (2006) Large-conductance, calcium-activated potassium channels: structural and functional implications. Pharmacol Ther 110: 103-116.
  • Giangiacomo KM, Garcia-Calvo M, Knaus HG, Mullmann TJ, Garcia ML, McManus O (1995) Functional reconstitution of the large-conductance, calcium-activated potassium channel purified from bovine aortic smooth muscle. Biochemistry 34: 15849-15862.
  • Grunnet M, Rasmussen HB, Hay-Schmidt A, Klaerke DA (2003) The voltage-gated potassium channel subunit, Kv1.3, is expressed in epithelia. Biochim Biophys Acta 1616: 85-94.
  • Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stühmer W, Wang X (2005) International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 57: 473-508.
  • Inoue I, Nagase H, Kishi K, Higuti T (1991) ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352: 244-247.
  • Halestrap AP (1994) Regulation of mitochondrial metabolism through changes in matrix volume. Biochem Soc Trans 22: 522-529.
  • Hanley PJ, Daut JK (2005) KATP channels and preconditioning: a re-examination of the role of mitochondrial KATP channels and an overview of alternative mechanisms. J Mol Cell Cardiol 39: 17-50.
  • Hille B (2001) Potassium channels and chloride channels. In Ion channels of excitable membranes. Chapter 5, pp 131-167. Sunderland, Mass: Sinauer.
  • Kathiresan T, Harvey M, Orchard S, Sakai Y, Sokolowski B (2009) A protein interaction network for the large conductance Ca2+-activated K+ channel in the mouse cochlea. Mol Cell Proteomics 8: 1972-1987.
  • Kicinska A, Swida A, Bednarczyk P, Koszela-Piotrowska I, Choma K, Dolowy K, Szewczyk A, Jarmuszkiewicz W (2007) ATP-sensitive potassium channel in mitochondria of the eukaryotic microorganism, Acanthamoeba castellanii. J Biol Chem 282: 17433-17441.
  • Kim Y, Bang H, Kim D (2000) TASK-3, a new member of the tandem pore K+ channel family. J Biol Chem 275: 9340-9347.
  • Knaus HG, Schwarzer C, Koch RO, Eberhart A, Kaczorowski GJ, Glossmann H, Wunder F, Pongs O, Garcia ML, Sperk G (1996) Distribution of high-conductance Ca2+-activated K+ channels in rat brain: targeting to axons and nerve terminals. J Neurosci 16: 955-963.
  • Kulawiak B, Bednarczyk P (2005) Reconstitution of brain mitochondria inner membrane into planar lipid bilayer. Acta Neurobiol Exp 65: 271-276.
  • Lacza Z, Snipes JA, Kis B, Szabo C, Grover G, Busija DW (2003) Investigation of the subunit composition and the pharmacology of the mitochondrial ATP-dependent K+ channel in the brain. Brain Res 994: 27-36.
  • Lesage F, Lazdunski M (2000) Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol 279: F793-F801.
  • Lingle CJ, Solaro CR, Prakriya M, Ding JP (1996) Calcium-activated potassium channels in adrenal chromaffin cells. Ion Channels 4: 261-301.
  • Meadows HJ, Randall AD (2001) Functional characterisation of human TASK-3, an acid-sensitive two-pore domain potassium channel. Neuropharmacology 40: 551-559.
  • Meech RW (1974) The sensitivity of Helix aspersa neurones to injected calcium ions. J Physiol 237: 259-277.
  • Meech RW, Standen NB (1974) Calcium-mediated potassium activation in Helix neurones. J Physiol 237: 43P-44P.
  • Meuth SG, Budde T, Kanyshkova T, Broicher T, Munsch T, Pape H-C (2003) Contribution of TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 channels to the control of activity modes in thalamocortical neurons. J Neurosci 23: 6460-6469.
  • Mourre C, Chernova MN, Martin-Eauclaire MF, Bessone R, Jacquet G, Gola M, Alper SL, Crest M (1999) Distribution in rat brain of binding sites of kaliotoxin, a blocker of Kv1.1 and Kv1.3 alpha-subunits. J Pharmacol Exp Ther 291: 943-952.
  • Nakae Y, Kwok WM, Bosnjak ZJ, Jiang MT (2003) Isoflurane activates rat mitochondrial ATP-sensitive K+ channels reconstituted in lipid bilayers. Am J Physiol Heart Circ Physiol 284: H1865-H1871.
  • Pastore D, Stoppelli MC, Di Fonzo N, Passarella S (1999) The existence of the K+ channel in plant mitochondria. J Biol Chem 274: 26683-26690.
  • Paucek P, Mironova G, Mahdi F, Beavis AD, Woldegiorgis G, Garlid KD (1992) Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K+ channel from rat liver and beef heart mitochondria. J Biol Chem 267: 26062-26069.
  • Piwonska M, Wilczek E, Szewczyk A, Wilczynski GM (2008) Differential distribution of Ca2+-activated potassium channel β4 subunit in rat brain: immunolocalization in neuronal mitochondria. Neuroscience 153: 446-460.
  • Rusznak Z, Bakondi G, Kosztka L, Pocsai K, Diens B, Fodor J, Telek A, Gomczi M, Szucs G, Csernoch L (2008) Mitochondrial expression of the two-pore domain TASK-3 channels in malignantly transformed and non-malignant human cells. Virchows Arch 452: 415-426.
  • Sato T, Saito T, Saegusa N, Nakaya H (2005) Mitochondrial Ca2+-activated K+ channels in cardiac myocytes: A mechanism of the cardioprotective effect and modulation by protein kinase A. Circulation 111: 198-203.
  • Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M (2000) Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 52: 557-594.
  • Siemen D, Loupatatzis C, Borecky J, Gulbins E, Lang F (1999) Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem Biophys Res Commun 257: 549-554.
  • Singh H, Hudman D, Lawrence CL, Rainbow RD, Lodwick D, Norm RI (2003) Distribution of Kir6.0 and SUR2 ATP-sensitive potassium channel subunits in isolated ventricular myocytes. J Mol Cell Cardiol 35: 445-459.
  • Skalska J, Bednarczyk P, Piwońska M, Kulawiak B, Wilczynski G, Dołowy K, Kudin AP, Kunz WS, Szewczyk A (2009) Calcium ions regulate K uptake into brain mitochondria: The evidence for a novel potassium channel. Int J Mol Sci 10: 1104-1120.
  • Szabo I, Bock J, Grassmé H, Soddemann M, Wilker B, Lang F, Zoratti M, Gulbins E (2008) Mitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytes. Proc Natl Acad Sci USA 105: 14861-14866.
  • Szabo I, Bock J, Jekle A, Soddemann M, Adams C, Lang F, Zoratti M, Gulbins E (2005) A novel potassium channel in lymphocyte mitochondria. J Biol Chem 280: 12790-12798.
  • Szewczyk A, Jarmuszkiewicz W, Kunz WS (2009) Mitochondrial potassium channels. IUBMB Life 61: 134-143.
  • Szewczyk A, Wojcik G, Lobanov NA, Nalecz MJ (1999) Modification of the mitochondrial sulfonylurea receptor by thiol reagents. Biochem Biophys Res Commun 262: 255-258.
  • Szewczyk A, Wojcik G, Lobanov NA, Nalecz MJ (1997) The mitochondrial sulfonylurea receptor: identification and characterization. Biochem Biophys Res Commun 230: 611-615.
  • Suzuki M, Kotake K, Fujikura K, Inagaji N, Suzuki T, Gonoi T, Seino S, Takata K (1997) Kir6.1: a possible subunit of ATP-sensitive K+ channels in mitochondria. Biochem Biophys Res Commun 241: 693-697.
  • Wallner M, Meera P, Toro L (1999) Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: a transmembrane beta-subunit homolog. Proc Natl Acad Sci USA 96: 4137-4142.
  • Watanabe M, Katsura K, Ohsawa I, Mizukoshi G, Takahashi K, Asoh S, Ohta S, Katayama Y (2008) Involvement of mitoKATP channel in protective mechanisms of cerebral ischemic tolerance. Brain Res 1238: 199-207.
  • Wegener S, Gottschalk B, Jovanovic V, Knab R, Fiebach JB, Schellinger PD, Kucinski T, Jungehülsing GJ, Brunecker P, Müller B, Banasik A, Amberger N, Wernecke KD, Siebler M, Röther J, Villringer A, Weih M; MRI in Acute Stroke Study Group of the German Competence Network Stroke (2004) Transient ischemic attacks before ischemic stroke: preconditioning the human brain? A multicenter magnetic resonance imaging study. Stroke 35: 616-621.
  • Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H (2005) International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev 57: 463-472.
  • Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A, O'Rourke B (2002) Cytoprotective role of Ca2+-activated K+ channels in the cardiac inner mitochondrial membrane. Science 298: 1029-1033.
  • Yao X, Chang AY, Boulpaep EL, Segal AS, Desir GV (1996) Molecular cloning of a glibenclamide-sensitive, voltage-gated potassium channel expressed in rabbit kidney. J Clin Invest 97: 2525-2533.
  • Zhang DX, Chen YF, Campbell WB, Zou AP, Gross GJ, Li PL (2001) Characteristics and superoxide-induced activation of reconstituted myocardial mitochondrial ATP-sensitive potassium channels. Circ Res 89: 1177-1183.
  • Zhou M, Tanaka O, Sekiguchi M, Sakabe K, Anzai M, Izumida I, Inoue T, Kawahara K, Abe H (1999) Localization of the ATP-sensitive potassium channel subunit (Kir6. 1/uK(ATP)-1) in rat brain. Brain Res Mol Brain Res 74: 15-25.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv56p385kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.