Preferences help
enabled [disable] Abstract
Number of results
2008 | 55 | 4 | 721-730
Article title

Physicochemical analysis of phosphatidylcholine-ceramide system in bilayer lipid membranes

Title variants
Languages of publication
Electrochemical impedance spectroscopy was used for the study of two-component lipid membranes. Phosphatidylcholine and ceramide were to be investigated, since they play an important biochemical role in cell membranes. The research on biolipid interaction was focused on quantitative description of processes that take part in a bilayer. Assumed models of interaction between amphiphilic molecules and the equilibria that take place there were described by mathematical equations for the studied system. The possibility of complex formation for two-component system forming bilayers was assumed that could explain the deviation from additivity rule. Equilibria were described by mathematical equations that were further verified experimentally. The determined values of parameters (stability constant, molecular area of complex, capacitance and conductance of the lipid membranes formed from molecules and complexes) were used for calculation of model curves. The comparison of model curves and experimental points verified the assumed model.
Physical description
  • Institute of Chemistry, University of Bialystok, Białystok, Poland
  • Institute of Chemistry, University of Bialystok, Białystok, Poland
  • Laboratory of Electrochemical Power Sources, Faculty of Chemistry, University of Warsaw, Warszawa, Poland
  • Benz R, Frohlich O, Lauger O, Montal M (1975) Electrical capacity of black films and of lipid bilayers made from monolayers. Biochim Biophys Acta 394: 323-334.
  • Boncheva M, Damien F, Normand V (2008) Molecular organization of the lipid matrix in intact stratum corneum using ATR-FTIR spectroscopy. Biochim Biophys Acta 1778: 1344-1355.
  • Cadenhead DA (1970) Monolayers of synthetic phospholipids. In Recent progress in surface science. Danielli JF, Riddiford AC, Rosenberg M, eds. Academic Press, New York & London.
  • Carrer DC, Maggio B (2001) Transduction to self-assembly of molecular geometry and local interactions in mixtures of ceramides and ganglioside GM1. Biochim Biophys Acta 1514: 87-99.
  • Costa EJX, Shida CS, Biaggi MH, Ito AS, Lamy-Freund MT (1997) How melatonin interacts with lipid bilayers: a study by fluorescence and ESR spectroscopies. FEBS Lett 416: 103-106.
  • Coster HGL, Chilcott TC, Coster ACF (1996) Impedance spectroscopy of interfaces, membranes and ultrastructures. Bioelectrochem Bioenerg 40: 79-98.
  • Demel RA, de Kruyff B (1976) The function of sterols in membranes. Biochim Biophys Acta 457: 109-132.
  • Diociaiuti M, Ruspantini I, Giordani C, Bordi F, Chistolini P (2004) Distribution of GD3 in DPPC monolayers: a thermodynamic and atomic force microscopy combined study. Biophys J 86: 321-328.
  • Dobrowsky RT (2000) Sphingolipid signalling domains floating on rafts or buried in caves? Cell Signal 12: 81-90.
  • Goni FM, Alonso A (2006) Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim Biophys Acta 1758: 1902-1921.
  • Hannun YA (1996) Functions of ceramide in coordinating cellular responses to stress. Science 274: 1855-1859.
  • Hianik T, Passechnik VI, Sargent DF, Dlugopolsky J, Sokolikova L (1995) Surface potentials and solvent redistribution may explain the dependence of electrical and mechanical properties of supported lipid bilayers on applied potential and bilayer history. Bioelectrochem Bioenerg 37: 61-68.
  • Hianik T, Fajkus M, Tarus B, Frangopol PT, Markin VS, Landers DF (1998) The electrostriction, surface potential and capacitance relaxation of bilayer lipid membranes induced by tetracaine. Bioelectrochem Bioenerg 46: 1-5.
  • Holopainen JM, Lehtonen JYA, Kinnunen PKJ (1997) Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes. Chem Phys Lipids 88: 1-13.
  • Holopainen JM, Subramanian M, Kinnunen PKJ (1998) Sphingomyelinase induced lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry 37: 17562-17570.
  • Horváth R, Fricsovszky G, Papp E (2003) Application of the optical waveguide lightmode spectroscopy to monitor lipid bilayer phase transition. Biosens Bioelectron 18: 415-428.
  • Hsueh YW, Giles R, Kitson N, Thewalt J (2002) The effect of ceramide on phosphatidylcholine membranes: a deuterium NMR study. Biophys J 82: 3089-3095.
  • Huang H-W, Goldberg EM, Zidovetzki R (1999) Ceramides perturb lipid bilayer structure and activate protein kinase C. Biophys J 77: 1489-1497.
  • Imura T, Sakai H, Yamauchi H, Kozawa K, Yokoyama S, Matsumoto M, Abe M (2000) Atomic force microscopic study on the surface properties of phospholipid monolayers containing ceramide 3. Colloids Surf B Biointerfaces 19: 81-87.
  • Inczedy J (1976) In Analytical applications of complex equlibria. Akademiai Kiado, Budapest.
  • Janas T, Janas T, Walińska K (2000) The effect of hexadecaprenyl diphosphate on phospholipid membranes. Biochim Biophys Acta 1464: 273-283.
  • Kalinowski S, Figaszewski ZA (1995) A four-electrode potentiostat-galvanostat for studies of bilayer lipid membranes. Meas Sci Technol 6: 1050-1055.
  • Karolins C, Coster HGL, Chilcott TC, Barrow KD (1998) Differential effects of cholesterol and oxidized-cholesterol in egg lecithin bilayers. Biochim Biophys Acta 1368: 247-255.
  • Krysiński P (1982) Applications of pulse techniques in the investigations of artificial lipid membranes. Postepy Biochem 28: 227-249 (in Polish).
  • Laggner P, Filek M, Szechynska-Hebda M, Kriechbaum M (2003) X-ray structure investigations of winter wheat membrane systems. II. Effect of phytohormones on structural properties of mixed phospholipid-sterols membranes. Plant Sci 165: 271-275.
  • London E (2002) Insights into lipid raft structure and formation from experiments in model membranes. Curr Opin Struct Biol 12: 480-486.
  • Maccioni HJ, Giraudo CG, Daniotti JL (2002) Understanding the stepwise synthesis of glycolipids. Neurochem Res 27: 629-636.
  • Maggio B (2004) Favorable and unfavorable lateral interactions of ceramide, neutral glycosphingolipids and gangliosides in mixed monolayers. Chem Phys Lipids 132: 209-224.
  • Maggio B, Ariga T, Calderón RO, Yu RK (1997) Ganglioside GD3 and GD3-lactone mediated regulation of the intermolecular organization in mixed monolayers with dipalmitoylphosphatidylcholine. Chem Phys Lipids 90: 1-10.
  • Malcolmson RJ, Higinbotham J, Beswick PH, Privat PO, Saunier L (1997) DSC of DMPC liposomes containing low concentrations of cholesteryl esters or cholesterol. J Membrane Sci 123: 243-253.
  • Massey JB (2001) Interaction of ceramides with phosphalidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers. Biochim Biophys Acta 1510: 167-184.
  • Naumowicz M, Figaszewski ZA (2003) Impedance analysis of phosphatidylcholine membranes modified with gramicidin D. Bioelectrochemistry 61: 21-27.
  • Naumowicz M, Figaszewski ZA (2007) Impedance spectroscopic investigation of phosphatidylethanolamine-cholesterol and sphingomyelin-cholesterol equilibria in model membranes. Bulg Chem Commun 39: 175-181.
  • Naumowicz M, Petelska AD, Figaszewski ZA (2003) Capacitance and resistance of the bilayer lipid membrane formed of phosphatidylcholine and cholesterol. Cell Mol Biol Lett 8: 5-18.
  • Naumowicz M, Petelska AD, Figaszewski ZA (2005) Impedance analysis of phosphatidylcholine-cholesterol system in bilayer lipid membranes. Electrochim Acta 50: 2155-2161.
  • Naumowicz M, Petelska AD, Figaszewski ZA (2006) Impedance analysis of phosphatidylcholine-phosphatidylethanolamine system in bilayer lipid membranes. Electrochim Acta 51: 5024-5028.
  • Ourisson G, Nakatani Y (1994) The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol. Chem Biol 1: 11-23.
  • Petelska A, Figaszewski ZA (2000) Effect of pH on the interfacial tension of lipid bilayer membrane. Biophys J 78: 812-817.
  • Petelska AD, Naumowicz M, Figaszewski ZA (2006) Physicochemical insights into equilibria in bilayer lipid membranes. In Advances in planar lipid bilayers and liposomes, Tien HT, Ottova A, eds. Elsevier, Amsterdam.
  • Przestalski S, Sarapuk J, Kleszczyńska H, Gabrielska J, Hładyszowski J, Trela Z, Kuczera J (2000) Influence of amphiphilic compounds on membranes. Acta Biochim Polon 47: 627-638.
  • Rao CS, Damodaran S (2004) Surface pressure dependence of phospholipase A2 activity in lipid monolayers is linked to interfacial water activity. Colloids Surf B Biointerfaces 34: 197-204.
  • Steinem C, Janshoff A, Ulrich WP, Sieber M, Galla H-J (1996) Impedance analysis of supported lipid bilayer membranes: a scrutiny of different preparation techniques. Biochim Biophys Acta 1279: 169-180.
  • Tien HT (1974) In Bilayer lipid membrane: theory and practice. Marcel Dekker, New York.
  • Veiga MP, Arrondo JL, Goni FM, Alonso A (1999) Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases. Biophys J 76: 342-350.
  • Wisniewska A, Widomska J, Subczynski WK (2006) Carotenoid-membrane interactions in liposomes: effect of dipolar, monopolar, and nonpolar carotenoids. Acta Biochim Polon 53: 475-484.
  • Ye J-S, Ottova A, Tien HT, Sheu F-S (2001) Nitric oxide enhances the capacitance of self-assembled, supported bilayer lipid membranes. Electrochem Commun 3: 580-584.
  • Yu RK, Bieberich E, Xia T, Zeng G (2004) Regulation of ganglioside biosynthesis in the nervous system. J Lipid Res 45: 783-793.
  • Zhao L, Feng S (2004) Effects of lipid chain length on molecular interactions between paclitaxel and phospholipid within model biomembranes. J Colloid Interface Sci 274: 55-68.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.