PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 55 | 4 | 663-671
Article title

The plant Nudix hydrolase family

Content
Title variants
Languages of publication
EN
Abstracts
EN
Nudix hydrolases are a family of proteins defined by a conserved amino-acid sequence GX5-EX7REUXEEXGU, where U is a hydrophobic residue. These enzymes are widely distributed among all classes of organisms and catalyze, with varying degrees of substrate specificity, the hydrolysis of a variety of nucleoside diphosphate derivatives: nucleoside di- and triphosphates and their oxidized forms, dinucleoside polyphosphates, nucleotide sugars, NADH, coenzyme A and the mRNA cap. Nudix proteins are postulated to control the cellular concentration of these compounds. The genome of the model plant Arabidopsis thaliana contains 29 genes coding for putative Nudix hydrolases. Recently, several Arabidopsis Nudix genes have been cloned and their products characterized. This review summarizes current knowledge on these plant enzymes and discusses their possible cellular functions.
Year
Volume
55
Issue
4
Pages
663-671
Physical description
Dates
published
2008
received
2008-10-04
revised
2008-11-19
accepted
2008-12-04
(unknown)
2008-12-16
References
  • Arczewska KD, Kuśmierek JT (2007) Bacterial DNA repair genes and their eukaryotic homologues: 2. Role of bacterial mutator gene homologues in human disease. Overview of nucleotide pool sanitization and mismatch repair systems. Acta Biochim Polon 54: 435-457.
  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402.
  • Bessman MJ, Frick DN, O'Handley SF (1996) The MutT proteins or Nudix hydrolases, a family of versatile widely distributed, housecleaning enzymes. J Biol Chem 271: 25059-25062.
  • Bonanno JB, Edo C, Eswar N, Pieper U, Romanowski MJ, Ilyin V, Gerchman SE, Kycia H, Studier FW, Sali A, B urley SK (2001) Structural genomics of enzymes involved in sterol/isoprenoid biosynthesis. Proc Natl Acad Sci USA 98: 12896-12901.
  • Caffrey JJ, Safrany ST, Yang XN, Shears SB (2000) Discovery of molecular and catalytic diversity among human diphosphoinositol-polyphosphate phosphohydrolases-an expanding NUDT family. J Biol Chem 275: 12730-12736.
  • Campbell M, Hahn FM, Poulter CD, Leustek T (1997) Analysis of the isopentenyl diphosphate isomerase gene family from Arabidopsis thaliana. Plant Mol Biol 36: 323-328.
  • Cervantes-Laurean D, Jacobson EL, Jacobson MK (1996) Glycation and glycoxidation of histones by ADP-ribose. J Biol Chem 271: 10461-10469.
  • Coller J, Parker R (2004) Eukaryotic mRNA decapping. Annu Rev Biochem 73: 861-890.
  • Deana A, Celesnik H, Belasco JG (2008) The bacterial enzyme RppH triggers messenger RNA degradation by 5' pyrophosphate removal. Nature 451: 355-358.
  • Dobrzańska M, Szurmak B, Wyslouch-Cieszynska A, Kraszewska E (2002) Cloning and characterization of the first member of the Nudix family from Arabidopsis thaliana. J Biol Chem 277: 50482-50486.
  • Fisher DI, Safrany ST, Strike P, McLennan AG, Cartwright JL (2002) Nudix hydrolases that degrade dinucleoside and diphosphoinositol polyphosphates also have 5-phosphoribosyl 1-pyrophosphate (PRPP) pyrophosphatase activity that generates the glycolytic activator ribose 1,5-bisphosphate. J Biol Chem 277: 47313-47317.
  • Fisher DI, Cartwright JL, Harashima H, Kamiya H, McLennan AG (2004) Characterization of a Nudix hydrolase from Deinococcus radiodurans with a marked specificity for (deoxy) ribonucleoside 5'-diphosphates. BMC Biochem 5: 7.
  • Fletcher JI, Swarbrick JD, Maksel D, Gayler KR, Gooley PR (2002) The structure of Ap(4)A hydrolase complexed with ATP-MgF(x) reveals the basis of substrate binding. Structure 10: 205-213.
  • Gabelli SB, Bianchet MA, Azurmendi HF, Xia Z, Sarawat V, Mildvan AS, Amzel LM (2004) Structure and mechanism of GDP-mannose glycosyl hydrolase, a Nudix enzyme that cleaves at carbon instead of phosphorus. Structure 12: 927-935.
  • Gabelli SB, Bianchet MA, Xu w, Dunn CA, Niu ZD, Amzel LM, Bessman MJ (2007) Structure and function of the E. coli dihydroneopterin triphosphate pyrophosphatase: a Nudix enzyme involved in folate biosynthesis. Structure 15: 1014-1022.
  • Gunawardana D, Cheng HC, Gayler KR (2008) Identification of functional domains in Arabidopsis thaliana mRNA decapping enzyme (AtDCP2). Nucleic Acids Res 36: 203-216.
  • Guranowski A (1990) Fluoride is a strong and specific inhibitor of (asymmetrical) Ap4A hydrolases. FEBS Lett 262: 205-208.
  • Guranowski A (2000) Specific and nonspecific enzymes involved in the catabolism of mononucleoside and dinucleoside polyphosphates. Pharmacol Ther 87: 117-139.
  • Guranowski A (2004) Metabolism of diadenosine tetraphosphate (Ap4A) and related nucleotides in plants; review with historical and general perspective. Front Biosci 9: 1398-1411.
  • Han MK, Kim JS, Park YR, Shin YM, Park HJ, Park KJ, Park KH, Kim HK, Jang SI, An NH, Kim UH (2002) Antidiabetic effect of a prodrug of cysteine, l-2-oxothiazolidine-4-carboxylic acid, through CD38 dimerization and internalization. J Biol Chem 277: 5315-5321.
  • Hori M, Fujikawa K, Kasai H, Harashima H, Kamiya H (2005) Dual hydrolysis of diphosphate and triphosphate derivatives of oxidized deoxyadenosine by Orf17 (NtpA), a MutT-type enzyme. DNA Repair 4: 33-39.
  • Hua LV, Hidaka K, Pesesse X, Barnes LD, Shears SB (2003) Paralogous murine Nudt10 and Nudt11 genes have differential expression patterns but encode identical proteins that are physiologically competent diphosphoinositol polyphosphate phosphohydrolases. Biochem. J 373: 81-89.
  • Ito R, Hayakawa H, Sekiguchi M, Ishibash T (2005) Multiple enzyme activities of Escherichia coli MutT protein for sanitization of DNA and RNA precursor pools. Biochemistry 44: 6670-6674.
  • Iwasaki S, Takeda A, Motose H, Watanabe Y (2007) Characterization of Arabidopsis decapping AtDCP1 and AtDCP2, which are essential for postembryonic development. FEBS Lett 581: 2455-2459.
  • Jacobson EL, Cervantes-Laurean D, Jacobson MK (1994) Glycation of proteins by ADP-ribose. Mol Cell Biochem 138: 207-212.
  • Jambunathan N, Mahalingam R (2006) Analysis of Arabidopsis growth factor gene 1 (AtGFG1) encoding a nudix hydrolase during oxidative signaling. Planta 224: 1-11.
  • Jankowski J, Tepel M, van der Giet M, Tente IM, Henning L, Junker R, Zidek W, Schulter H (1999) Identification and characterization of P(1), P(7)-di(adenosine-5')-heptaphosphate from human platelets. J Biol Chem 274: 23926-23931.
  • Kim UH, Kim MK, Kim JS, Han MK, Park BH, Kim HR (1993) Purification and characterization of NAD glycohydrolase from rabbit erythrocytes. Arch Biochem Biophys 305: 147-152.
  • Klaus SMJ, Wegkamp A, Sybesma W, Hugenholtz J, Gregory JF, Hanson AD (2005) A nudix enzyme removes pyrophosphate from dihydroneopterin triphosphate in the folate synthesis pathway of bacteria and plants. J Biol Chem 280: 5274-5280.
  • Kwak YG, Park SK, Kim UH, Han MK, Eun JS, Cho KP, Chae SW (1996) Intracellular ADP-ribose inhibits ATP-sensitive K+ channels in rat ventricular myocytes. Am J Physiol 271: C464-C468.
  • Lawhorn BG, Gerdes SY, Begley TP (2004) A genetic screen for the identification of thiamin metabolic genes. J Biol Chem 279: 43555-43559.
  • Legler PM, Massiah MA, Bessman MJ, Mildvan AS (2000) GDP-mannose mannosyl hydrolase catalyzes nucleophilic substitution at carbon, unlike all other Nudix hydrolases. Biochemistry 39: 8603-8608.
  • Maksel D, Guranowski A, Ilgoutz SC, Moir A, Blackburn MG, Gayler KR (1998) Cloning and expression of diadenosine 5',5'-P1,P4-tetraphosphate hydrolase from Lupinus angustifolius L. Biochem J 329: 313-319.
  • Maksel D, Gooley PD, Swarbrick JD, Guranowski A, Gange C, Blackburn MG, Gayler KR (2001) Characterization of active-site residues in diadenosine tetraphosphate hydrolase from Lupinus angustifolius. Biochem J 357: 399-405.
  • McLennan AG (2000) Dinucleoside polyphosphates - friend or foe? Pharmacol Ther 87: 73-89.
  • McLennan AG (2006) The nudix hydrolase superfamily. Cell Mol Life Sci 63: 123-143.
  • McLennan AG, Barnes LD, Blackburn GM, Brenner C, Guranowski A, Miller AD, Rovira JM, Rotllan P, Soria B, Tanner JA, Sillero A (2001) Recent progress in the study of the intracellular functions of diadenosine polyphosphates. Drug Dev Res 52: 249-259.
  • Mildvan AS, Xia Z, Azurmendi HF, Saraswat V, Legler PM, Massiah MA, Gabelli SB, Bianchet MA, Kang LW, Amzel LM (2005) Structures and mechanisms of nudix hydrolases. Arch Biochem Biophys 433: 129-143.
  • Moreno-Bruna B, Baroja-Fernandez E, Munoz FJ, Bastarrica-Berasategui A, Zandueta-Criado A, Rodrigez-Lopez M, Lasa I, Akazawa T, Pozueta-Romero J (2001) Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli. Proc Natl Acad Sci USA 98: 8128-8132.
  • Munoz FJ, Baroja-Fernandez E, Moran-Zorzano MT, Alonso-Casajus N, Pozueta-Romero J (2006) Cloning, expression and characterization of Nudix hydrolase that catalyzes the hydrolytic breakdown of ADP-glucose linked to starch biosynthesis in Arabidopsis thaliana. Plant Cell Physiol 47: 926-934.
  • Munoz FJ, Baroja-Fernandez E, Ovecka M, Li J, Mitsui T, Sesma MT, Montero M, Bahaji A, Ezquer I, Pozueta-Romero J (2008) Plastidial localization of potato Nudix hydrolase of ADP-glucose linked to starch biosynthesis. Plant Cell Physiol 49: 1734-1746.
  • Ogawa T, Ueda Y, Yoshimura K, Shigeoka S (2005) Comprehensive analysis of cytosolic Nudix hydrolases in Arabidopsis thaliana. J Biol Chem 280: 25277-25283.
  • Ogawa T, Ishikawa K, Harada K, Fukusaki E, Yoshimura K, Shigeoka S (2008a) Overexpression of an ADP-ribose pyrophosphatase AtNUDX2, confers enhanced tolerance to oxidative stress on Arabidopsis plants. Plant J, PMID: 18798872 (Epub ahead of print).
  • Ogawa T, Yoshimura K, Miyake H, Ishikawa K, Ito D, Tanabe N, Shigeoka S (2008b) Molecular characterization of organelle-type Nudix hydrolases in Arabidopsis thaliana. Plant Physiol 148: 1412-1421.
  • Olejnik K, Kraszewska E (2005) Cloning and characterization of an Arabidopsis thaliana Nudix hydrolase homologous to the mammalian GFG protein. Biochim Biophys Acta 1752: 133-141.
  • Olejnik K, Murcha MW, Whelan J, Kraszewska E (2007) Cloning and characterization of AtNUDT13, a novel mitochondrial Arabidopsis thaliana Nudix hydrolase specific for long-chain diadenosine polyphosphates. FEBS J 274: 4877-4885.
  • Safrany ST, Caffrey JJ, Yang XY, Bembenek ME, Moyer MB, Burkhart WA, Shears SB (1998) A novel context for the MutT module, a guardian of cell integrity, in a diphosphoinositol polyphosphate phosphohydrolase. EMBO J 17: 6599-6607.
  • Safrany ST, Cartwright JL, Yang X, Shears SB (1999a) Diphosphoinositol polyphosphates: the final frontier for inositide research. Biol Chem 380: 945-951.
  • Safrany ST, Ingram SW, Cartwright JL, Falck JR, McLennan AG, Barnes LD, Shears SB (1999b) The diadenosine hexaphosphate hydrolases from Schizosaccharomyces pombe and Saccharomyces cerevisiae are homologues of the human diphosphoinositol polyphosphate phosphohydrolase. Overlapping substrate specificities in a MutT-type protein. J Biol Chem 274: 21735-21740.
  • She M, Decker CJ, Chen N, Tumat S, Parker R, Song H (2006) Crystal structure and functional analysis of Dcp2p from Schizosaccharomyces pombe. Nat Struct Mol Biol 13: 63-70.
  • Smit A, Mushegian A (2008) Biosynthesis of isoprenoids via mevalonate in Archea: The lost pathway. Genome Res 10: 1468-1484.
  • Swarbrick JD, Bashannyk T, Maksel D, Zhang XR, Blackburn GM, Gayler KR, Gooley PR (2000) The three-dimensional structure of the nudix enzyme diadenosine tetraphosphate hydrolase from Lupinus angustifolius L. J Mol Biol 302: 1165-1177.
  • Szurmak B, Wysłouch-Cieszyńska A, Wszelaka-Rylik M, Bal W, Dobrzańska M (2008) A adenosine 5',5''-P1P4 tetraphosphate (Ap4A) hydrolase from Arabidopsis thaliana that is activated preferentially by Mn2+ ions. Acta Biochim Polon 55: 151-160.
  • Volk DE, House PG, Thiviyanathan V, Luxon BA, Zhanf S, Lloyd RS, Gorenstein DG (2000) Structural similarities between MutT and the C-terminal domain of MutY. Biochemistry 39: 7331-7336.
  • Wang Z, Jiao X, Carr-Schmid A, Kiledjian M (2002) The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc Natl Acad Sci USA 99: 12663-12668.
  • Xu WL, Shen JY, Dunn CA, Desai S, Bessman MJ (2001) The nudix hydrolases of Deinococcus radiodurans. Mol Microbiol 39: 286-290.
  • Xu WL, Shen JY, Dunn CA, Bessman MJ (2003) A new subfamily of the nudix hydrolase superfamily active on 5-methyl-UTP (Ribo-TTP) and UTP. J Biol Chem 278: 37492-37497.
  • Xu WL, Dunn CA, Jones CR, D'Souza G, Bessman MJ (2004) The 26 nudix hydrolases of Bacillus cereus, a close relative of Bacillus anthracis. J Biol Chem 279: 24861-24865.
  • Xu J, Yang J-Y, Niu Q-W, Chua N-H (2006) Arabidopsis DCP2, DCP1 and Varicose form a decapping complex required for postembryonic development. Plant Cell 18: 3386-3398.
  • Yang XN, Safrany ST, Shears SB (1999) Site-directed mutagenesis of diphosphoinositol polyphosphate phosphohydrolase, a dual specificity NUDT enzyme that attacks diadenosine polyphosphate and diphosphoinositol polyphosphates. J Biol Chem 274: 35434-35440.
  • Yoshimura K, Ogawa T, Ueda Y, Shigeoka S (2007) AtNUDX1, an 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate pyrophosphohydrolase, is responsible for eliminating oxidized nucleotides in Arabidopsis. Plant Cell Physiol 48: 1438-1449.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv55p663kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.