Preferences help
enabled [disable] Abstract
Number of results
2008 | 55 | 4 | 629-647
Article title

The role of nuclear factor-κB in the development of autoimmune diseases: a link between genes and environment

Title variants
Languages of publication
Although autoimmune diseases are relatively common, mechanisms that lead to their development remain largely unknown. Nuclear factor-κB (NF-κB), as a key transcription factor involved in the regulation of immune responses and apoptosis, appears to be a good candidate for studies on the pathogenesis of autoimmunity. This review presents how perturbations of the NF-κB signaling pathway may contribute to self-tolerance failure, initiation of autoimmune inflammatory response as well as its persistent maintenance and therefore to the development of common autoimmune diseases including rheumatoid arthritis, multiple sclerosis, type 1 diabetes mellitus, thyroid autoimmune diseases, systemic lupus erythematosus as well as inflammatory bowel diseases and psoriasis. A special emphasis is put on the genetic variations in the NF-κB related genes and their possible association with susceptibility to autoimmune diseases, as well as on the therapeutic potential of the NF-κB targeted strategies in the treatment of autoimmunity.
Physical description
  • Department of Endocrinology, Medical Research Center, Polish Academy of Sciences, Warszawa, Poland
  • Department of Endocrinology, Medical Research Center, Polish Academy of Sciences, Warszawa, Poland
  • Akiyama T, Maeda S, Yamane S, Ogino K, Kasai M, Kajiura F, Matsumoto M, Inoue J (2005) Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308: 248-251.
  • Andresen L, Jorgensen VL, Perner A, Hansen A, Eugen-Olsen J, Rask-Madsen J (2005) Activation of nuclear factor κB in colonic mucosa from patients with collagenous and ulcerative colitis. Gut 54: 503-599.
  • Atreya I, Atreya R, Neurath MF (2008) NF-κB in inflammatory bowel disease. J Intern Med 263: 591-596.
  • Bacher S, Schmitz ML (2004) The NF-κB pathway as a potential target for autoimmune disease therapy. Curr Pharm Des 10: 2827-2837.
  • Ballard DW, Dixon EP, Peffer NJ, Bogerd H, Doerre S, Stein B, Greene WC (1992) The 65-kDa subunit of human NF-κB functions as a potent transcriptional activator and a target for v-Rel-mediated repression. Proc Natl Acad Sci USA 89: 1875-1879.
  • Beinke S, Ley SC (2004) Functions of NF-κB1 and NF-κB2 in immune cell biology. Biochem J 382: 393-409.
  • Benito MJ, Murphy E, Murphy EP, van den Berg WB, FitzGerald O, Bresnihan B (2004) Increased synovial tissue NF-κ B1 expression at sites adjacent to the cartilage-pannus junction in rheumatoid arthritis. Arthritis Rheum 50: 1781-1787.
  • Bohren KM, Nadkarni V, Song JH, Gabbay KH, Owerbach D (2004) A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem 279: 27233-27238.
  • Bonen DK, Ogura Y, Nicolae DL, Inohara N, Saab L, Tanabe T, Chen FF, Foster SJ, Duerr RH, Brant SR, Cho JH, Nunez G (2003) Crohn's disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology 124: 140-146.
  • Bonetti B, Stegagno C, Cannella B, Rizzuto N, Moretto G, Raine CS (1999) Activation of NF-κB and c-jun transcription factors in multiple sclerosis lesions. Implications for oligodendrocyte pathology. Am J Pathol 155: 1433-1438.
  • Borm ME, van Bodegraven AA, Mulder CJ, Kraal G, Bouma G (2005) A NFKB1 promoter polymorphism is involved in susceptibility to ulcerative colitis. Int J Immunogenet 32: 401-405.
  • Burgos P, Metz C, Bull P, Pincheira R, Massardo L, Errázuriz C, Bono MR, Jacobelli S, González A (2000) Increased expression of c-rel, from the NF-κB/Rel family, in T cells from patients with systemic lupus erythematosus. J Rheumatol 27: 116-127.
  • Butt C, Sun S, Peddle L, Greenwood C, Hamilton S, Gladman D, Rahman P (2005) Association of nuclear factor-κB in psoriatic arthritis. J Rheumatol 32: 1742-1744.
  • Caamano J, Alexander J, Craig L, Bravo R, Hunter CA (1999) The NF-κ B family member RelB is required for innate and adaptive immunity to Toxoplasma gondii. J Immunol 163: 4453-4461.
  • Campbell IK, Gerondakis S, O'Donnell K, Wicks IP (2000) Distinct roles for the NF-κB1 (p50) and c-Rel transcription factors in inflammatory arthritis. J Clin Invest 105: 1799-1806.
  • Canto E, Ricart E, Busquets D, Monfort D, Garcia-Planella E, Gonzalez D, Balanzo J, Rodriguez-Sanchez JL, Vidal S (2007) Influence of a nucleotide oligomerization domain 1 (NOD1) polymorphism and NOD2 mutant alleles on Crohn's disease phenotype. World J Gastroenterol 13: 5446-5453.
  • Cao HJ, Smith TJ (1999) Leukoregulin upregulation of prostaglandin endoperoxide H synthase-2 expression in human orbital fibroblasts. Am J Physiol 277: C1075-1085.
  • Cavanaugh J (2006) NOD2: ethnic and geographic differences. World J Gastroenterol 12: 3673-3677.
  • Chan R, Gilbert M, Thompson KM, Marsh HN, Epstein DM, Pendergrast PS (2006) Co-expression of anti-NFκB RNA aptamers and siRNAs leads to maximal suppression of NFκB activity in mammalian cells. Nucleic Acids Res 34: e36.
  • Cho JH, Nicolae DL, Gold LH, Fields CT, LaBuda MC, Rohal PM, Pickles MR, Qin L, Fu Y, Mann JS, Kirschner BS, Jabs EW, Weber J, Hanauer SB, Bayless TM, Brant SR (1998) Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes 1p, 3q, and 4q: evidence for epistasis between 1p and IBD1. Proc Natl Acad Sci USA 95: 7502-7507.
  • De Bosscher K, Vanden Berghe W, Haegeman G (2003) The interplay between the glucocorticoid receptor and nuclear factor-κB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 24: 488-522.
  • Eizirik DL, Mandrup-Poulsen T (2001) A choice of death - the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 44: 2115-2133.
  • Eldor R, Cohen IR, Raz I (2005) Innovative immune-based therapeutic approaches for the treatment of type 1 diabetes mellitus. Int Rev Immunol 24: 327-339.
  • Ferreiros-Vidal I, Garcia-Meijide J, Carreira P, Barros F, Carracedo A, Gomez-Reino JJ, Gonzalez A (2003) The three most common CARD15 mutations associated with Crohn's disease and the chromosome 16 susceptibility locus for systemic lupus erythematosus. Rheumatology (Oxf) 42: 570-574.
  • Fichtner-Feigl S, Fuss IJ, Preiss JC, Strober W, Kitani A (2005) Treatment of murine Th1- and Th2-mediated inflammatory bowel disease with NF-κB decoy oligonucleotides. J Clin Invest 115: 3057-3071.
  • Flores N, Duran C, Blasco MR, Puerta C, Dorado B, Garcia-Merino A, Ballester S (2003) NFκB and AP-1 DNA binding activity in patients with multiple sclerosis. J Neuroimmunol 135: 141-147.
  • Franchi L, McDonald C, Kanneganti TD, Amer A, Nunez G (2006) Nucleotide-binding oligomerization domain-like receptors: intracellular pattern recognition molecules for pathogen detection and host defense. J Immunol 177: 3507-3513.
  • Fujihara SM, Cleaveland JS, Grosmaire LS, Berry KK, Kennedy KA, Blake JJ, Loy J, Rankin BM, Ledbetter JA, Nadler SG (2000) A d-amino acid peptide inhibitor of NF-κB nuclear localization is efficacious in models of inflammatory disease. J Immunol 165: 1004-1012.
  • Gerondakis S, Grossmann M, Nakamura Y, Pohl T, Grumont R (1999) Genetic approaches in mice to understand Rel/NF-κB and IκB function: transgenics and knockouts. Oncogene 18: 6888-6895.
  • Ghandil P, Chelala C, Dubois-Laforgue D, Senee V, Caillat-Zucman S, Kockum I, Luthman H, Nerup J, Pociot F, Timsit J, Julier C (2005) Crohn's disease associated CARD15 (NOD2) variants are not involved in the susceptibility to type 1 diabetes. Mol Genet Metab 86: 379-383.
  • Glas J, Torok HP, Tonenchi L, Muller-Myhsok B, Mussack T, Wetzke M, Klein W, Epplen JT, Griga T, Schiemann U, Lohse P, Seiderer J, Schnitzler F, Brand S, Ochsenkuhn T, Folwaczny M, Folwaczny C (2006) Role of the NFKB1 -94ins/delATTG promoter polymorphism in IBD and potential interactions with polymorphisms in the CARD15/NOD2, IKBL, and IL-1RN genes. Inflamm Bowel Dis 12: 606-611.
  • Goodnow CC, Sprent J, Fazekas de St Groth B, Vinuesa CG (2005) Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 435: 590-597.
  • Gross JA, Johnston J, Mudri S, Enselman R, Dillon SR, Madden K, Xu W, Parrish-Novak J, Foster D, Lofton-Day C, Moore M, Littau A, Grossman A, Haugen H, Foley K, Blumberg H, Harrison K, Kindsvogel W, Clegg CH (2000) TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404: 995-999.
  • Guo D, Li M, Zhang Y, Yang P, Eckenrode S, Hopkins D, Zheng W, Purohit S, Podolsky RH, Muir A, Wang J, Dong Z, Brusko T, Atkinson M, Pozzilli P, Zeidler A, Raffel LJ, Jacob CO, Park Y, Serrano-Rios M, Larrad MT, Zhang Z, Garchon HJ, Bach JF, Rotter JI, She JX, Wang CY (2004) A functional variant of SUMO4, a new IκBα modifier, is associated with type 1 diabetes. Nat Genet 36: 837-841.
  • Gveric D, Kaltschmidt C, Cuzner ML, Newcombe J (1998) Transcription factor NF-κB and inhibitor IκBα are localized in macrophages in active multiple sclerosis lesions. J Neuropathol Exp Neurol 57: 168-178.
  • Gylvin T, Bergholdt R, Nerup J, Pociot F (2002) Characterization of a nuclear-factor-κ B (NFκB) genetic marker in type 1 diabetes (T1DM) families. Genes Immun 3: 430-432.
  • Han Z, Boyle DL, Manning AM, Firestein GS (1998) AP-1 and NF-κB regulation in rheumatoid arthritis and murine collagen-induced arthritis. Autoimmunity 28: 197-208.
  • Handel ML, McMorrow LB, Gravallese EM (1995) Nuclear factor-κ B in rheumatoid synovium. Localization of p50 and p65. Arthritis Rheum 38: 1762-1770.
  • Harii N, Lewis CJ, Vasko V, McCall K, Benavides-Peralta U, Sun X, Ringel MD, Saji M, Giuliani C, Napolitano G, Goetz DJ, Kohn LD (2005) Thyrocytes express a functional toll-like receptor 3: overexpression can be induced by viral infection and reversed by phenylmethimazole and is associated with Hashimoto's autoimmune thyroiditis. Mol Endocrinol 19: 1231-1250.
  • Hayashi T, Faustman D (1999) NOD mice are defective in proteasome production and activation of NF-κB. Mol Cell Biol 19: 8646-8659.
  • Hayden MS, West AP, Ghosh S (2006) NF-κB and the immune response. Oncogene 25: 6758-6780.
  • Hegazy DM, O'Reilly DA, Yang BM, Hodgkinson AD, Millward BA, Demaine AG (2001) NFκB polymorphisms and susceptibility to type 1 diabetes. Genes Immun 2: 304-308.
  • Hernandez A, Burger M, Blomberg BB, Ross WA, Gaynor JJ, Lindner I, Cirocco R, Mathew JM, Carreno M, Jin Y, Lee KP, Esquenazi V, Miller J (2007) Inhibition of NF-κ B during human dendritic cell differentiation generates anergy and regulatory T-cell activity for one but not two human leukocyte antigen DR mismatches. Hum Immunol 68: 715-729.
  • Hilliard B, Samoilova EB, Liu TS, Rostami A, Chen Y (1999) Experimental autoimmune encephalomyelitis in NF-κB-deficient mice: roles of NF-κB in the activation and differentiation of autoreactive T cells. J Immunol 163: 2937-2943.
  • Hilliard BA, Mason N, Xu L, Sun J, Lamhamedi-Cherradi SE, Liou HC, Hunter C, Chen YH (2002) Critical roles of c-Rel in autoimmune inflammation and helper T cell differentiation. J Clin Invest 110: 843-850.
  • Hostens K, Pavlovic D, Zambre Y, Ling Z, Van Schravendijk C, Eizirik DL, Pipeleers DG (1999) Exposure of human islets to cytokines can result in disproportionately elevated proinsulin release. J Clin Invest 104: 67-72.
  • Hugot JP, Chamaillard M, Zouali H, Lesage S, Cézard JP, Belaiche J, Almer S, Tysk C, O'Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411: 599-603.
  • Hurst J, von Landenberg P (2008) Toll-like receptors and autoimmunity. Autoimmun Rev 7: 204-208.
  • Ishikawa H, Claudio E, Dambach D, Raventós-Suárez C, Ryan C, Bravo R (1998) Chronic inflammation and susceptibility to bacterial infections in mice lacking the polypeptide (p)105 precursor (NF-κB1) but expressing p50. J Exp Med 187: 985-996.
  • Isomura I, Morita A (2006) Regulation of NF-κB signaling by decoy oligodeoxynucleotides. Microbiol Immunol 50: 559-563.
  • Johansen C, Flindt E, Kragballe K, Henningsen J, Westergaard M, Kristiansen K, Iversen L (2005) Inverse regulation of the nuclear factor-κB binding to the p53 and interleukin-8 κB response elements in lesional psoriatic skin. J Invest Dermatol 124: 1284-1292.
  • Karban AS, Okazaki T, Panhuysen CI, Gallegos T, Potter JJ, Bailey-Wilson JE, Silverberg MS, Duerr RH, Cho JH, Gregersen PK, Wu Y, Achkar JP, Dassopoulos T, Mezey E, Bayless TM, Nouvet FJ, Brant SR (2004) Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet 13: 35-45.
  • Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18: 621-663.
  • Kikumori T, Kambe F, Nagaya T, Funahashi H, Seo H (2001) Thyrotropin modifies activation of nuclear factor κB by tumour necrosis factor alpha in rat thyroid cell line. Biochem J 354: 573-579.
  • Kishore N, Sommers C, Mathialagan S, Guzova J, Yao M, Hauser S, Huynh K, Bonar S, Mielke C, Albee L, Weier R, Graneto M, Hanau C, Perry T, Tripp CS (2003) A selective IKK-2 inhibitor blocks NF-κB-dependent gene expression in interleukin-1 β-stimulated synovial fibroblasts. J Biol Chem 278: 32861-32871.
  • Klein W, Tromm A, Folwaczny C, Hagedorn M, Duerig N, Epplen JT, Schmiegel WH, Griga T (2004) A polymorphism of the NFKBIA gene is associated with Crohn's disease patients lacking a predisposing allele of the CARD15 gene. Int J Colorectal Dis 19: 153-156.
  • Kosoy R, Concannon P (2005) Functional variants in SUMO4, TAB2, and NFκB and the risk of type 1 diabetes. Genes Immun 6: 231-235.
  • Kucharzik T, Maaser C, Lügering A, Kagnoff M, Mayer L, Targan S, Domschke W (2006) Recent understanding of IBD pathogenesis: implications for future therapies. Inflamm Bowel Dis 12: 1068-1083.
  • Kurylowicz A, Hiromatsu Y, Jurecka-Lubieniecka B, Kula D, Kowalska M, Ichimura M, Koga H, Kaku H, Bar-Andziak E, Nauman J, Jarzab B, Ploski R, Bednarczuk T (2007) Association of NFKB1 -94ins/del ATTG promoter polymorphism with susceptibility to and phenotype of Graves' disease. Genes Immun 8: 532-538.
  • Kutlu B, Cardozo AK, Darville MI, Kruhøffer M, Magnusson N, Ørntoft T, Eizirik DL (2003) Discovery of gene networks regulating cytokine-induced dysfunction and apoptosis in insulin-producing INS-1 cells. Diabetes 52: 2701-2719.
  • Lee DF, Hung MC (2008) Advances in targeting IKK and IKK-related kinases for cancer therapy. Clin Cancer Res 14: 5656-5662.
  • Leshinsky-Silver E, Karban A, Cohen S, Fridlander M, Davidowich O, Kimmel G, Shamir R, Levine A (2007) Lack of association of the 3'-UTR polymorphism in the NFKBIA gene with Crohn's disease in an Israeli cohort. Int J Colorectal Dis 22: 1021-1025.
  • Li H, Gao L, Shen Z, Li CY, Li K, Li M, Lv YJ, Li CX, Gao TW, Liu YF (2008) Association study of NFκB1 and SUMO4 polymorphisms in Chinese patients with psoriasis vulgaris. Arch Dermatol Res 300: 425-433.
  • Li Q, Verma IM (2002) NF-κB regulation in the immune system. Nat Rev Immunol 2: 725-734.
  • Liang Y, Zhou Y, Shen P (2004) NF-κB and its regulation on the immune system. Cell Mol Immunol 1: 343-350.
  • Lin CH, Ou TT, Wu CC, Tsai WC, Liu HW, Yen JH (2007) IκBalpha promoter polymorphisms in patients with rheumatoid arthritis. Int J Immunogenet 34: 51-54.
  • Lin CH, Wang SC, Ou TT, Li RN, Tsai WC, Liu HW, Yen JH (2008) I κ B α promoter polymorphisms in patients with systemic lupus erythematosus. J Clin Immunol 28: 207-213.
  • Lizzul PF, Aphale A, Malaviya R, Sun Y, Masud S, Dombrovskiy V, Gottlieb AB (2005) Differential expression of phosphorylated NF-κB/RelA in normal and psoriatic epidermis and downregulation of NF-κB in response to treatment with etanercept. J Invest Dermatol 124: 1275-1283.
  • Ma W, Mishra S, Gee K, Mishra JP, Nandan D, Reiner NE, Angel JB, Kumar A (2007) Cyclosporin A and FK506 inhibit IL-12p40 production through the calmodulin/ calmodulin-dependent protein kinase-activated phosphoinositide 3-kinase in lipopolysaccharide-stimulated human monocytic cells. J Biol Chem 282: 13351-13362.
  • Mackay F, Woodcock SA, Lawton P, Ambrose C, Baetscher M, Schneider P, Tschopp J, Browning JL (1999) Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 190: 1697-1710.
  • MacMaster JF, Dambach DM, Lee DB, Berry KK, Qiu Y, Zusi FC, Burke JR (2003) An inhibitor of IκB kinase, BMS-345541, blocks endothelial cell adhesion molecule expression and reduces the severity of dextran sulfate sodium-induced colitis in mice. Inflamm Res 52: 508-511.
  • Maeda S, Hsu LC, Liu H, Bankston LA, Iimura M, Kagnoff MF, Eckmann L, Karin M (2005) Nod2 mutation in Crohn's disease potentiates NF-κB activity and IL-1β processing. Science 307: 734-738.
  • Marienfeld R, May MJ, Berberich I, Serfling E, Ghosh S, Neumann M (2003) RelB forms transcriptionally inactive complexes with RelA/p65. J Biol Chem 278: 19852-19860.
  • McGovern DP, Hysi P, Ahmad T, van Heel DA, Moffatt MF, Carey A, Cookson WO, Jewell DP (2005) Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum Mol Genet 14: 1245-1250.
  • McIntyre KW, Shuster DJ, Gillooly KM, Dambach DM, Pattoli MA, Lu P, Zhou XD, Qiu Y, Zusi FC, Burke JR (2003) A highly selective inhibitor of IκB kinase, BMS-345541, blocks both joint inflammation and destruction in collagen-induced arthritis in mice. Arthritis Rheum 48: 2652-2659.
  • Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449: 819-826.
  • Meyer S, Kohler NG, Joly A (1997) Cyclosporine A is an uncompetitive inhibitor of proteasome activity and prevents NF-κB activation. FEBS Lett 413: 354-358.
  • Miagkov AV, Kovalenko DV, Brown CE, Didsbury JR, Cogswell JP, Stimpson SA, Baldwin AS, Makarov SS (1998) NF-κB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc Natl Acad Sci USA 95: 13859-13864.
  • Mirza MM, Fisher SA, Onnie C, Lewis CM, Mathew CG, Sanderson J, Forbes A (2005) No association of the NFKB1 promoter polymorphism with ulcerative colitis in a British case control cohort. Gut 54: 1205-1206.
  • Miterski B, Böhringer S, Klein W, Sindern E, Haupts M, Schimrigk S, Epplen JT (2002) Inhibitors in the NFκB cascade comprise prime candidate genes predisposing to multiple sclerosis, especially in selected combinations. Genes Immun 3: 211-219.
  • Mollah ZU, Pai S, Moore C, O'Sullivan BJ, Harrison MJ, Peng J, Phillips K, Prins JB, Cardinal J, Thomas R (2008) Abnormal NF-κ B function characterizes human type 1 diabetes dendritic cells and monocytes. J Immunol 180: 3166-3175.
  • Murakawa Y, Takada S, Ueda Y, Suzuki N, Hoshino T, Sakane T (1985) Characterization of T lymphocyte subpopulations responsible for deficient interleukin 2 activity in patients with systemic lupus erythematosus. J Immunol 134: 187-195.
  • Neurath MF, Pettersson S, Meyer zum Büschenfelde KH, Strober W (1996) Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-κB abrogates established experimental colitis in mice. Nat Med 2: 998-1004.
  • Norlin S, Ahlgren U, Edlund H (2005) Nuclear factor-κB activity in β-cells is required for glucose-stimulated insulin secretion. Diabetes 54: 125-132.
  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343: 938-952.
  • Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nuñez G, Cho JH (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411: 603-606.
  • Oikonomidou O, Vlachoyiannopoulos PG, Kominakis A, Kalofoutis A, Moutsopoulos HM, Moutsatsou P (2006) Glucocorticoid receptor, nuclear factor κB, activator protein-1 and C-jun N-terminal kinase in systemic lupus erythematosus patients. Neuroimmunomodulation 13: 194-204.
  • Okamoto K, Makino S, Yoshikawa Y, Takaki A, Nagatsuka Y, Ota M, Tamiya G, Kimura A, Bahram S, Inoko H (2003) Identification of IκBL as the second major histocompatibility complex-linked susceptibility locus for rheumatoid arthritis. Am J Hum Genet 72: 303-312.
  • Oliver J, Gomez-Garcia M, Paco L, Lopez-Nevot MA, Pinero A, Correro F, Martin L, Brieva JA, Nieto A, Martin J (2005) A functional polymorphism of the NFKB1 promoter is not associated with ulcerative colitis in a Spanish population. Inflamm Bowel Dis 11: 576-579.
  • Orozco G, Sanchez E, Collado MD, Lopez-Nevot MA, Paco L, Garcia A, Jimenez-Alonso J, Martin J (2005) Analysis of the functional NFKB1 promoter polymorphism in rheumatoid arthritis and systemic lupus erythematosus. Tissue Antigens 65: 183-186.
  • Pahan K, Schmid M (2000) Activation of nuclear factor-kB in the spinal cord of experimental allergic encephalomyelitis. Neurosci Lett 287: 17-20.
  • Palombella VJ, Conner EM, Fuseler JW, Destree A, Davis JM, Laroux FS, Wolf RE, Huang J, Brand S, Elliott PJ, Lazarus D, McCormack T, Parent L, Stein R, Adams J, Grisham MB (1998) Role of the proteasome and NF-κB in streptococcal cell wall-induced polyarthritis. Proc Natl Acad Sci USA 95: 15671-15676.
  • Pang XP, Hershman JM, Chung M, Pekary AE (1989) Characterization of tumor necrosis factor-alpha receptors in human and rat thyroid cells and regulation of the receptors by thyrotropin. Endocrinology 125: 1783-1788.
  • Pasparakis M, Schmidt-Supprian M, Rajewsky K (2002) IκB kinase signaling is essential for maintenance of mature B cells. J Exp Med 196: 743-752.
  • Pawlik A, Kurzawski M, Gawronska-Szklarz B, Drozdzik M, Herczynska M (2007) NOD2 allele variants in patients with rheumatoid arthritis. Clin Rheumatol 26: 868-871.
  • Poligone B, Weaver DJ Jr, Sen P, Baldwin AS Jr, Tisch R (2002) Elevated NF-κB activation in nonobese diabetic mouse dendritic cells results in enhanced APC function. J Immunol 168: 188-196.
  • Rice NR, MacKichan ML, Israel A (1992) The precursor of NF-κ B p50 has I κ B-like functions. Cell 71: 243-253.
  • Rogler G, Brand K, Vogl D, Page S, Hofmeister R, Andus T, Knuechel R, Baeuerle PA, Schölmerich J, Gross V (1998) Nuclear factor κB is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology 115: 357-369.
  • Romagnani S (2008) Human Th17 cells. Arthritis Res Ther 10: 206.
  • Rueda B, Lopez-Nevot MA, Ruiz MP, Ortega E, Maldonado J, Lopez M, Martin J (2004) CA microsatellite polymorphism of the nuclear factor κB1 gene in celiac disease. Eur J Immunogenet 31: 129-132.
  • Schmidt-Supprian M, Courtois G, Tian J, Coyle AJ, Israël A, Rajewsky K, Pasparakis M (2003) Mature T cells depend on signaling through the IKK complex. Immunity 19: 377-389.
  • Schreiber S, Nikolaus S, Hampe J (1998) Activation of nuclear factor κ B inflammatory bowel disease. Gut 42: 477-484.
  • Sedimbi SK, Shastry A, Park Y, Rumba I, Sanjeevi CB (2006) Association of SUMO4 M55V polymorphism with autoimmune diabetes in Latvian patients. Ann NY Acad Sci 1079: 273-277.
  • Sedimbi SK, Luo XR, Sanjeevi CB, Swedish Childhood Diabetes Study Group; Diabetes Incidence in Sweden Study Group, Lernmark A, Landin-Olsson M, Arnqvist H, Björck E, Nyström L, Ohlson LO, Scherstén B, Ostman J, Aili M, Bååth LE, Carlsson E, Edenwall H, Forsander G, Granström BW, Gustavsson I, Hanås R, Hellenberg L, Hellgren H, Holmberg E, Hörnell H, Ivarsson SA, Johansson C, Jonsell G, Kockum K, Lindblad B, Lindh A, Ludvigsson J, Myrdal U, Neiderud J, Segnestam K, Sjöblad S, Skogsberg L, Strömberg L, Ståhle U, Thalme B, Tullus K, Tuvemo T, Wallensteen M, Westphal O, Dahlquist G, Aman J (2007) SUMO4 M55V polymorphism affects susceptibility to type I diabetes in HLA DR3- and DR4-positive Swedish patients. Genes Immun 8: 518-521.
  • Senftleben U, Cao Y, Xiao G, Greten FR, Krähn G, Bonizzi G, Chen Y, Hu Y, Fong A, Sun SC, Karin M (2001) Activation by IKKalpha of a second, evolutionary conserved, NF-κB signaling pathway. Science 293: 1495-1499.
  • Siebenlist U, Franzoso G, Brown K (1994) Structure, regulation and function of NF-κ B. Annu Rev Cell Biol 10: 405-455.
  • Simmonds MJ, Gough SC (2005) Genetic insights into disease mechanisms of autoimmunity. Br Med Bull 71: 93-113.
  • Simmonds MJ, Heward JM, Carr-Smith J, Foxall H, Franklyn JA, Gough SC (2006) Contribution of single nucleotide polymorphisms within FCRL3 and MAP3K7IP2 to the pathogenesis of Graves' disease. J Clin Endocrinol Metab 91: 1056-1061.
  • Smyth DJ, Howson JM, Lowe CE, Walker NM, Lam AC, Nutland S, Hutchings J, Tuomilehto-Wolf E, Tuomilehto J, Guja C, Ionescu-Tîrgoviste C, Undlien DE, Rønningen KS, Savage D, Dunger DB, Twells RC, McArdle WL, Strachan DP, Todd JA (2005) Assessing the validity of the association between the SUMO4 M55V variant and risk of type 1 diabetes. Nat Genet 37: 110-111.
  • Sun SC, Ley SC (2008) New insights into NF-κB regulation and function. Trends Immunol 29: 469-478.
  • Tak PP, Gerlag DM, Aupperle KR, van de Geest DA, Overbeek M, Bennett BL, Boyle DL, Manning AM, Firestein GS (2001) Inhibitor of nuclear factor κB kinase β is a key regulator of synovial inflammation. Arthritis Rheum 44: 1897-1907.
  • Takada Y, Bhardwaj A, Potdar P, Aggarwal BB (2004) Nonsteroidal anti-inflammatory agents differ in their ability to suppress NF-κB activation, inhibition of expression of cyclooxygenase-2 and cyclin D1, and abrogation of tumor cell proliferation. Oncogene 23: 9247-9258.
  • Takaesu G, Surabhi RM, Park KJ, Ninomiya-Tsuji J, Matsumoto K, Gaynor RB (2003) TAK1 is critical for IκB kinase-mediated activation of the NF-κB pathway. J Mol Biol 326: 105-115.
  • Takao J, Yudate T, Das A, Shikano S, Bonkobara M, Ariizumi K, Cruz PD (2003) Expression of NF-κB in epidermis and the relationship between NF-κB activation and inhibition of keratinocyte growth. Br J Dermatol 148: 680-688.
  • Tamura C, Nakazawa M, Kasahara M, Hotta C, Yoshinari M, Sato F, Minami M (2006) Impaired function of dendritic cells in alymphoplasia (aly/aly) mice for expansion of CD25+CD4+regulatory T cells. Autoimmunity 39: 445-453.
  • Tas SW, Vervoordeldonk MJ, Hajji N, May MJ, Ghosh S, Tak PP (2006) Local treatment with the selective IκB kinase beta inhibitor NEMO-binding domain peptide ameliorates synovial inflammation. Arthritis Res Ther 8: R86.
  • Thomas R (2005) The TRAF6-NFκB signaling pathway in autoimmunity: not just inflammation. Arthritis Res Ther 7: 170-173.
  • Tomita T, Hashimoto H, Yoshikawa H (2003) Gene therapy for arthritis. Curr Drug Targets 4: 609-612.
  • Tremelling M, Hancock L, Bredin F, Sharpstone D, Bingham SA, Parkes M (2006) Complex insertion/deletion polymorphism in NOD1 (CARD4) is not associated with inflammatory bowel disease susceptibility in East Anglia panel. Inflamm Bowel Dis 12: 967-971.
  • Ukil A, Maity S, Das PK (2006) Protection from experimental colitis by theaflavin-3,3'-digallate correlates with inhibition of IKK and NF-κB activation. Br J Pharmacol 149: 121-131.
  • Vallabhapurapu S, Ryseck RP, Malewicz M, Weih DS, Weih F (2001) Inhibition of NF-κB in T cells blocks lymphoproliferation and partially rescues autoimmune disease in gld/gld mice. Eur J Immunol 31: 2612-2622.
  • Van Limbergen J, Russell RK, Nimmo ER, Törkvist L, Lees CW, Drummond HE, Smith L, Anderson NH, Gillett PM, McGrogan P, Hassan K, Weaver LT, Bisset WM, Mahdi G, Arnott ID, Sjöqvist U, Lördal M, Farrington SM, Dunlop MG, Wilson DC, Satsangi J (2007) Contribution of the NOD1/CARD4 insertion/deletion polymorphism +32656 to inflammatory bowel disease in Northern Europe. Inflamm Bowel Dis 13: 882-889.
  • Vanderlugt CL, Rahbe SM, Elliott PJ, Dal Canto MC, Miller SD (2000) Treatment of established relapsing experimental autoimmune encephalomyelitis with the proteasome inhibitor PS-519. J Autoimmun 14: 205-211.
  • Venkataraman L, Burakoff SJ, Sen R (1995) FK506 inhibits antigen receptor-mediated induction of c-rel in B and T lymphoid cells. J Exp Med 181: 1091-1099.
  • Vinayagamoorthi R, Koner BC, Kavitha S, Nandakumar DN, Padma Priya P, Goswami K (2005) Potentiation of humoral immune response and activation of NF-κB pathway in lymphocytes in experimentally induced hyperthyroid rats. Cell Immunol 238: 56-60.
  • Wang CY, She JX (2008) SUMO4 and its role in type 1 diabetes pathogenesis. Diabetes Metab Res Rev 24: 93-102.
  • Weber CK, Liptay S, Wirth T, Adler G, Schmid RM (2000) Suppression of NF-κB activity by sulfasalazine is mediated by direct inhibition of IκB kinases alpha and beta. Gastroenterology 119: 1209-1218.
  • Wegener E, Krappmann D (2008) Dynamic protein complexes regulate NF-κB signaling. Handb Exp Pharmacol 186: 237-259.
  • Wong HK, Kammer GM, Dennis G, Tsokos GC (1999) Abnormal NF-κ B activity in T lymphocytes from patients with systemic lupus erythematosus is associated with decreased p65-RelA protein expression. J Immunol 163: 1682-1689.
  • Yates LL, Górecki DC (2006) The nuclear factor-κB (NF-κB): from a versatile transcription factor to a ubiquitous therapeutic target. Acta Biochim Polon 53: 651-662.
  • Young C, Allen MH, Cuthbert A, Ameen M, Veal C, Leman J, Burden AD, Kirby B, Griffiths CE, Trembath RC, Mathew CG, Barker JN (2003) A Crohn's disease-associated insertion polymorphism (3020insC) in the NOD2 gene is not associated with psoriasis vulgaris, palmo-plantar pustular psoriasis or guttate psoriasis. Exp Dermatol 12: 506-509.
  • Zhang B, Wang Z, Ding J, Peterson P, Gunning WT, Ding HF (2006) NF-κB2 is required for the control of autoimmunity by regulating the development of medullary thymic epithelial cells. J Biol Chem 281: 38617-38624.
  • Zhang X, Wang H, Claudio E, Brown K, Siebenlist U (2007) A role for the IκB family member Bcl-3 in the control of central immunologic tolerance. Immunity 27: 438-452.
  • Zollner TM, Podda M, Pien C, Elliott PJ, Kaufmann R, Boehncke WH (2002) Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model. J Clin Invest 109: 671-679.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.