Preferences help
enabled [disable] Abstract
Number of results
2008 | 55 | 4 | 619-628
Article title

SNARE proteins and schizophrenia: linking synaptic and neurodevelopmental hypotheses

Title variants
Languages of publication
Much of the focus of neurobiological research into schizophrenia is based on the concept that disrupted synaptic connectivity underlies the pathology of the disorder. Disruption of synaptic connectivity is proposed to be a consequence of both disrupted synaptic transmission in adulthood and abnormalities in the processes controlling synaptic connectivity during development of the central nervous system. This synaptic hypothesis fits with neurodevelopmental models of schizophrenia and our understanding of the mechanisms of antipsychotic medication. This conceptual model has fostered efforts to define the exact synaptic pathology further. Synaptic proteins are obvious candidates for such studies, and the integral role of the SNARE complex, and SNARE-associated proteins, in synaptic transmission will ensure that it is the focus of much of this research. Significant new insights into the role of this complex are arising from new mouse models of human disease. Here the evidence from both animal and human clinical studies showing that the SNARE complex has a key role to play in the aetiology and pathogenesis of schizophrenia is discussed.
Physical description
  • Department of Physiology, Human Anatomy & Genetics, University of Oxford, Oxford, England
  • Department of Physiology, Human Anatomy & Genetics, University of Oxford, Oxford, England
  • Department of Physiology, Human Anatomy & Genetics, University of Oxford, Oxford, England
  • Andreasen NC, Nopoulos P, O'Leary DS, Miller DD, Wassink T, Flaum M (1999) Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. Biol Psychiatry 46: 908-920.
  • Arnold SE, Trojanowski JQ (1996) Recent advances in defining the neuropathology of schizophrenia. Acta Neuropathol 92: 217-231.
  • Barr AM, Young CE, Phillips AG, Honer WG (2006) Selective effects of typical antipsychotic drugs on SNAP-25 and synaptophysin in the hippocampal trisynaptic pathway. Int J Neuropsychopharmacol 9: 457-463.
  • Boks MPM, Liddle PF, Burgerhof JGM, Knegtering R, van den Bosch RJ (2004) Neurological soft signs discriminating mood disorders from first episode schizophrenia. Acta Psychiatr Scand 110: 29-35.
  • Chaturvedi S, Thakur R (2003) Neuropathology of schizophrenia - a review. Indian J Pathol Microbiol 46: 165-169.
  • Church SM, Cotter D, Bramon E, Murray RM (2002) Does schizophrenia result from developmental or degenerative processes? J Neural Transm Suppl 63: 129-147.
  • Dworakowska B, Dolowy K (2000) Ion channels-related diseases. Acta Biochim Polon 47: 685-703.
  • Eastwood SL, Harrison PJ (1999) Detection and quantification of hippocampal synaptophysin messenger RNA in schizophrenia using autoclaved, formalin-fixed, paraffin wax-embedded sections. Neuroscience 93: 99-106.
  • Eastwood SL, Cairns NJ, Harrison PJ (2000) Synaptophysin gene expression in schizophrenia. Investigation of synaptic pathology in the cerebral cortex. Br J Psychiatry 176: 236-242.
  • Eastwood SL, Cotter D, Harrison PJ (2001) Cerebellar synaptic protein expression in schizophrenia. Neuroscience 105: 219-229.
  • Edelmann L, Hanson PI, Chapman ER, Jahn R (1995) Synaptobrevin binding to synaptophysin: a potential mechanism for controlling the exocytotic fusion machine. EMBO J 14: 224-231.
  • Fatemi SH, Earle JA, Stary JM, Lee S, Sedgewick J (2001) Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia. Neuroreport 12: 3257-3262.
  • Ferreira A, Kao HT, Feng J, Rapoport M, Greengard P (2000) Synapsin III: developmental expression, subcellular localisation, and role in axon formation. J Neurosci 20: 3736-3744.
  • Frankle WG, Lerma J, Laruelle M (2003) The synaptic hypothesis of schizophrenia. Neuron 39: 205-216.
  • Fujiwara T, Mishima T, Kofuji T, Chiba T, Tanaka K, Yamamoto A, Akagawa K (2006) Analysis of knock-out mice to determine the role of HPC-1/syntaxin 1A in expressing synaptic plasticity. J Neurosci 26: 5767-5776.
  • Gabriel SM, Haroutunian V, Powchick P, Honer WG, Davidson M, Davies P, Davis KL (1997) Increased concentrations of presynaptic proteins in the cingulated cortex of subjects with schizophrenia. Arch Gen Psychiatry 54: 559-566.
  • Gogos JA, Gerber DH (2006) Schizophrenia susceptibility genes: emergence of positional candidates and future directions. Trends Pharmacol Sci 27: 226-233.
  • Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, Karayiorgou M (1998) Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA 95: 9991-9996.
  • Gould TJ, Bizily SP, Tokarczyk J, Kelly MP, Siegel SJ, Kanes SJ, Abel T (2004) Sensorimotor gating deficits in transgenic mice expressing a constitutively active form of Gs alpha. Neuropsychopharmacology 29: 494-501.
  • Guerra A, Fearon P, Sham P, Jones P, Lewis S, Mata I, Murray R (2002) The relationship between predisposing factors, premorbid function and symptom dimensions in psychosis: an integrated approach. Eur Psychiatry 17: 311-320.
  • Halim ND, Weickert CS, McClintock BW, Hyde TM, Weinberger DR, Kleinman JE, Lipska BK (2003) Presynaptic proteins in the prefrontal cortex of patients with schizophrenia and rats with abnormal prefrontal development. Mol Psychiatry 8: 797-810.
  • Harrison PJ (1999) The neuropathology of schizophrenia: A critical review of the data and their interpretation. Brain 122: 593-624.
  • Harrison PJ (2004) The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 174: 151-162.
  • Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, neuropathology: on the matter of their convergence. Mol Psychiatry 10: 40-68.
  • Hashimoto R (2004) Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum Mol Genet 13: 2699-2708.
  • Hemby SE, Ginsberg SD, Brunk B, Arnold SE, Trojanowski JQ, Eberwine JH (2002) Gene expression profile for schizophrenia: discrete neuron transcription patterns in the entorhinal cortex. Arch Gen Psychiatry 59: 631-640.
  • Hess EJ, Jinnah HA, Kozak CA, Wilson MC (1992) Spontaneous locomotor hyperactivity in a mouse mutant with a deletion including the Snap gene on chromosome 2. J Neurosci 12: 2865-2874.
  • Hess EJ, Collins KA, Copeland NG, Jenkins NA, Wilson MC (1994) Deletion map of the coloboma (Cm) locus on mouse chromosome 2. Genomics 21: 257-261.
  • Hess EJ, Collins KA, Wilson MC (1996) Mouse model of hyperkinesis implicates Snap-25 in behavioral regulation. J Neurosci 16: 3104-3111.
  • Heyser CJ, Wilson MC, Gold LH (1995) Coloboma hyperactive mutant exhibits delayed neurobehavioral developmental milestones. Brain Res Dev Brain Res 89: 264-269.
  • Honer WG, Falkai P, Young TW, Xie WJ, Bonner J, Hu L, Boulianne GL, Luo Z, Trimble WS (1997) Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia. Neuroscience 78: 99-110.
  • Honer WG, Falkai P, Bayer TA, Xie J, Hu L, Li HY, Arango V, Mann JJ, Dwork AJ, Trimble WS (2002) Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cereb Cortex 12: 349-356.
  • Imai C, Sugai T, Iritani S, Niizato K, Nakamura R, Makifuchi T, Kakita A, Takahashi H, Nawa H (2001) A quantitative study on the expression of synapsin II and N-ethylmaleimide-sensitive fusion protein in schizophrenic patients. Neurosci Lett 305: 185-188.
  • Inoue S, Imamura A, Okazaki Y, Yokota H, Arai M, Hayashi N, Furukawa A, Itokawa M, Oishi M (2007) Synaptotagmin XI as a candidate gene for susceptibility to schizophrenia. Am J Med Genet Neuropsychiatr Genet 144B: 332-340.
  • Jeans AF, Oliver PL, Johnson RD, Capogna M, Vikman J, Molnár Z, Babbs A, Partridge CJ, Salehi A, Bengtsson M, Eliasson L, Rorsman P, Davies KE (2007) A dominant mutation in Snap25 causes impaired vesicle trafficking, sensorimotor gating, and ataxia in the blind drunk mouse. Proc Natl Acad Sci USA 104: 2431-2436.
  • Karayiorgou M, Morris MA, Morrow B, Shprintzen RJ, Goldberg R, Borrow J, Gos A, Nestadt G, Wolyniec PS, Lasseter VK, Eisen H, Childs B, Kazazian HH, Kucherlapati R, Antonarakis SE, Pulver AE, Housman DE (1995) Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci USA 92: 7612-7616.
  • Karson CN, Mrak RE, Schluterman KO, Sturner WQ, Sheng JG, Griffin WS (1999) Alterations in synaptic proteins and their encoding mRNAs in prefrontal cortex in schizophrenia: a possible neurochemical basis for 'hypofrontality'. Mol Psychiatry 4: 39-45.
  • Keshavan MS (1999) Development, disease and degeneration in schizophrenia: a unitary pathophysiological model. J Psychiatr Res 33: 513-521.
  • Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmuller B (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis of schizophrenia. Neurosci Lett 20: 379-382.
  • Kornhuber J (1992) Phencyclidine and schizophrenia. Am J Psychiatry 149: 848-849.
  • Kumamoto N, Matsuzaki S, Inoue K, Hattori T, Shimizu S, Hashimoto R, Yamatodani A, Katayama T, Tohyama M (2006) Hyperactivation of midbrain dopaminergic system in schizophrenia could be attributed to the down-regulation of dysbindin. Biochem Biophys Res Commun 345: 904-909.
  • Lachman HM, Stopkova P, Aghalar-Rafael M, Saito T (2005) Association of schizophrenia in African Americans to polymorphisms in synapsin III gene. Psychiatr Genet 15: 127-132.
  • Lang UE, Puls I, Muller DJ, Strutz-Seebohm N, Gallinat J (2007) Molecular mechanisms of schizophrenia. Cell Physiol Biochem 20: 687-702.
  • Lee HJ, Song JY, Kim JW, Jin SY, Hong MS, Park JK, Chung JH, Shibata H, Fukumaki Y (2005) Association study of polymorphisms in synaptic vesicle-associated genes, SYN2 and CPLX2, with schizophrenia. Behav Brain Funct 1: 15-23.
  • Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I, Williams NM, Schwab SG, Pulver AE, Faraone SV, Brzustowicz LM, Kaufmann CA, Garver DL, G urling HM, Lindholm E, Coon H, Moises HW, Byerley W, Shaw SH, Mesen A, Sherrington R, O'Neill FA, Walsh D, Kendler KS, Ekelund J, Paunio T, Lonnqvist J, Peltonen L, O'Donovan MC, Owen MJ, Wildenauer DB, Maier W, Nestadt G, Blouin JL, Antonarakis SE, Mowry BJ, Silverman JM, Crowe RR, Cloninger CR, Tsuang MT, Malaspina D, Harkavy-Friedman JM, Svrakic DM, Bassett AS, Holcomb J, Kalsi G, McQuillin A, Brynjolfson J, Sigmundsson T, Petursson H, Jazin E, Zoega T, Helgason T (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 73: 34-48.
  • Li W, Zhang Q, Oiso N, Novak EK, Gautam R, O'Brien EP, Tinsley CL, Blake DJ, Spritz RA, Copeland NG, Jenkins NA, Amato D, Roe BA, Starcevic M, Dell'Angelica C, Elliott RW, Mishra V, Kingsmore SF, Paylor RE, Swank RT (2003) Hermansky-Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1) Nat Genet 35: 84-89.
  • Martens S, Kozlov MM, McMahon HT (2007) How synaptotagmin promotes membrane fusion. Science 316: 1205-1008.
  • Masliah E, Terry RD, Alford M, DeTeresa R (1990) Quantitative immunohistochemistry of synaptophysin in human neocortex: an alternative method to estimates synaptic density of presynaptic terminals in paraffin sections. J Histochem Cytochem 38: 837-844.
  • Meltzer HY, Stahl SM (1976) The dopamine hypothesis of schizophrenia: a review. Schizophr Bull 2: 19-76.
  • Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P (2000) Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28: 53-67.
  • Miyakawa T, Sumiyoshi S, Deshimura M, Suzuki T, Tomonari H (1972) Electron microscopy study on schizophrenia: mechanism of pathological changes. Acta Neuropathol (Berl) 20: 67-77.
  • Molnár Z, Lopez-Bendito G, Small J, Partridge LD, Blakemore C, Wilson MC (2002) Normal development of embryonic thalamocortical connectivity in the absence of evoked synaptic activity. J Neurosci 22: 10313-10323.
  • Mukaetova-Ladinska EB, Hurt J, Honer WG, Harrington CR, Wischik CM (2002) Loss of synaptic but not cytoskeletal proteins in the cerebellum of chronic schizophrenics. Neurosci Lett 317: 161-165.
  • Muller DJ, Klempan TA, De Luca V, Sicard T, Volavka J, Czobor P, Sheitman BB, Lindenmayer JP, Citrome L, McEvoy JP, Lieberman JA, Honer WG, Kennedy JL (2005) The SNAP-25 gene may be associated with clinical response and weight gain in antipsychotic treatment of schizophrenia. Neurosci Lett 379: 81-89.
  • Norton N, Williams HJ, Owen MJ (2006) An update on the genetics of schizophrenia. Curr Opin Psychiatry 19: 158-164.
  • O'Tuathaigh CM, O'Sullivan GJ, Kinsella A, Harvey RP, Tighe O, Croke DT, Waddington JL (2006) Sexually dimorphic changes in the exploratory and habituation profiles of heterozygous neuregulin-1 knockout mice. Neuroreport 17: 79-83.
  • Owen MJ, O'Donovan MC, Harrison PJ (2005) Schizphrenia: a genetic disorder of the synpase. BMJ 330: 158-159.
  • Paterlini M, Zakharenko SS, Lai WS, Qin J, Zhang H, Mukai J, Westphal KGC, Olivier B, Sulzer B, Pavlidis P, Siegelbaum SA, Karayiorgou M, Gogos JA (2005) Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nat Neurosci 8: 1586-1594.
  • Porton B, Wetsel WC (2007) Reduction of synapsin III in the prefrontal cortex of individuals with schizophrenia. Schizophr Res 94: 366-370.
  • Porton B, Ferreira A, DeLisi LE, Kao HT (2004) A rare polymorphism affects a mitogen-activated protein kinase site in synapsin III: possible relationship to schizophrenia. Biol Psychiatry 55: 118-125.
  • Reim K, Mansour M, Varoqueaux F, McMahon HT, Sudhof TC, Brose N, Rosenmund C (2001) Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 104: 71-81.
  • Saviouk V, Moreau MP, Tereshchenko IV, Brzustowicz LM (2007) Association of synapsin 2 with schizophrenia in families of Northern European ancestory. Schizophr Res 96: 100-111.
  • Sawada K, Young CE, Barr AM, Longworth K, Takayashi S, Arango V, Mann JJ, Dwork AJ, Falkai P, Phillips AG, Honer WG (2002) Altered immunoreactivity of complexin protein in prefrontal cortex in severe mental illness. Mol Psychiatry 7: 484-492.
  • Scarr E, Gray L, Keriakous D, Roninson RJ, Dean B (2006) Increased levels of SNAP-25 and synaptophysin in the dorsoprefrontal cortex in bipolar I disorder. Bipolar Disord 8: 133-143.
  • Schoch S, Deák F, Königstorfer A, Mozhayeva M, Sara Y, Südhof TC, Kavalali ET (2001) SNARE function analysed in synaptobrevin/VAMP knockout mice. Science 294: 1117-1122.
  • Schwab SG, Knapp M, Mondabon S, Hallmayer J, Borrmann-Hassenbach M, Albus M, Lerer B, Reitschel M, Trixler M, Maier W, Wildenauer DB (2003) Support for association of schizophrenia with genetic variation in the 6p22.3 gene, disbindin, in sub-pair families with linkage and in an additional sample of triad families Am J Hum Genet 72: 185-190.
  • Searle AG (1966) New mutants 2: Coloboma. Mouse News Lett 35-27.
  • Shifman S, Bronstein M, Sternfeld M, Pisante A, Weizman A, Reznik I, Spivak B, Grisaru N, Karp L, Schiffer R, Kotler M, Strous RD, Swartz-Vanetik M, Knobler HY, Shinar E, Yakir B, Zak NB, Darvasi A (2004) COMT: a common susceptibility gene in bipolar disorder and schizophrenia. Am J Med Genet B Neuropsychiatr Genet 128B: 61-64.
  • Shimazaki Y, Nishiki T, Omori A, Sekiguchi M, Kamata Y, Kozaki S, Takahashi M (1966) Phosphorylation of 25-kDa synaptosome-associated protein. Possible involvement in protein kinase C-mediated regulation of neurotransmitter release. J Biol Chem 271: 14548-14553.
  • Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362: 318-214.
  • Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Petursson H, Stefansson K (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71: 877-892.
  • Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C, Wormley B, Sadek H, Kadambi B, Cesare AJ, Gibberman A, Wang X, O'Neill FA, Walsh D, Kendler KS (2002) Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 71: 337-348.
  • Sudhof TC (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375: 645-653.
  • Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27: 509-547.
  • Tachikawa H, Harada S, Kawanishi Y, Okubo T, Suzuki T (2001) Polymorphism of the 5'-upstream region of the human SNAP-25 gene: an association analysis with schizophrenia. Neuropsychobiology 43: 131-133.
  • Takahashi S, Ujihara H, Huang GZ, Yagyu KI, Sanbo M, Kaba H, Yagi T (1999) Reduced hippocampal LTP in mice lacking a presynaptic protein: complexin II. Eur J Neurosci 11: 2359-2366.
  • Talbot K, Cho DS, Ong WY, Benson MA, Han LY, Kazi HA, Kamins J, Hahn CG, Blake DJ, Arnold SE (2006) Dysbindin-1 is a synaptic and microtubular protein that binds brain snapin. Hum Mol Genet 15: 3041-3054.
  • Theiler K, Varnum DS (1981) Development of Coloboma (Cm/+), a mutation with anterior lens adhesion. Anat Embryol 162: 121-126.
  • Thompson PM, Sower AC, Perrone-Bizzozero NI (1998) Altered levels of the synaptosomal associated protein SNAP-25 in schizophrenia. Biol Psychiatry 43: 239-243.
  • Thompson PM, Rosenberger C, Gualls C (1999) CSF SNAP-25 in schizophrenia and bipolar illness. A pilot study. Neuropsychopharmacology 21: 717-722.
  • Thompson PM, Egbufoama S, Vawter MP (2003a) SNAP-25 reduction in the hippocampus of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 27: 411-417.
  • Thompson PM, Kelly M, Yao J, Tsai G, van Kammen DP (2003b) Elevated cerebrospinal fluid SNAP-25 in schizophrenia. Biol Psychiatry 53: 1132-1137.
  • Young CE, Arima K, Xie J, Hu L, Beach TG, Falkai P, Honer WG (1998) SNAP-25 deficit and hippocampal connectivity in schizophrenia. Cereb Cortex 8: 261-268.
  • Washbourne P, Thompson PM, Carta M, Costa ET, Matthews JR, López-Bendito G, Molnár Z, Becher MW, Valenzuela CF, Partridge LD, Wilson MC (2002) Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 5: 19-26.
  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44: 660-669.
  • Wilson MC (2000) Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder. Neurosci Biobehav Rev 24: 51-57.
  • Wong AH, Trakalo J, Likhodi O, Yusuf M, Macedo A, Azevedo MH, Klempan T, Pato MT, Honer WG, Pato CN, Van Tol HH, Kennedy JL (2004) Association between schizophrenia and the syntaxin 1A gene. Biol Psychiatry 56: 24-29.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.