PL EN


Preferences help
enabled [disable] Abstract
Number of results
2007 | 54 | 1 | 71-78
Article title

In vitro DNA binding of purified CcpA protein from Lactococcus lactis IL1403

Content
Title variants
Languages of publication
EN
Abstracts
EN
During this study His-tagged CcpA protein purified under native conditions to obtain a biologically active protein was used for molecular analysis of CcpA-dependent regulation. Using electrophoretic mobility shift assays it was demonstrated that CcpA of L. lactis can bind DNA in the absence of the HPr-Ser-P corepressor and exhibits DNA-binding affinity for nucleotide sequences lacking cre sites. However, purified HPr-Ser-P protein from Bacillus subtilis was shown to slightly increase the DNA-binding capacity of the CcpA protein. It was also observed that CcpA bound to the cre box forms an apparently more stable complex than that resulting from unspecific binding. Competition gel retardation assay performed on DNA sequences from two PEP:PTS regions demonstrated that the ybhE, bglS, rheB, yebE, ptcB and yecA genes situated in these regions are most probably directly regulated by CcpA.
Year
Volume
54
Issue
1
Pages
71-78
Physical description
Dates
published
2007
received
2006-08-24
revised
2007-02-20
accepted
2007-03-02
(unknown)
2007-03-14
References
  • Aleksandrzak T, Kowalczyk M, Kok J, Bardowski J (2000) Regulation of carbon catabolism in Lactococcus lactis. Food Biotechnol 17: 61-66.
  • Aung-Hilbrich LM, Seidel G, Wagner A, Hillen W (2002) Quantification of the influence of HPrSer46P on CcpA-cre interaction. J Mol Biol 319: 77-85.
  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11: 731-753.
  • Davison SP, Santangelo JD, Reid SJ, Woods DR (1995) A Clostridium acetobutylicum regulator gene (regA) affecting amylase production in Bacillus subtilis. Microbiology 141: 989-996.
  • Deutscher J, Kuster E, Bergstedt U, Charrier V, Hillen W (1995) Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol Microbiol 15: 1049-1053.
  • Egeter O, Bruckner R (1996) Catabolite repression mediated by the catabolite control protein CcpA in Staphylococcus xylosus. Mol Microbiol 21: 739-749.
  • Fujita Y, Miwa Y, Galinier A, Deutscher J (1995) Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol Microbiol 17: 953-960.
  • Galinier A, Deutscher J, Martin-Verstraete I (1999) Phosphorylation of either Crh or HPr mediates binding of CcpA to the Bacillus subtilis xyn cre and catabolite repression of the xyn operon. J Mol Biol 286: 307-314.
  • Guédon E, Jamet E, Renault P (2002) Gene regulation in Lactococcus lactis: the gap between predicted and characterized regulators. Antonie Van Leeuwenhoek 82: 93-112.
  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18: 2714-2723.
  • Henkin TM, Grundy FJ, Nicholson WL, Chambliss GH (1991) Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli Lacl and GalR repressors. Mol Microbiol 5: 575-584.
  • Jones BE, Dossonnet V, Kuster E, Hillen W, Deutscher J, Klevit RE (1997) Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. J Biol Chem 272: 26530-26535.
  • Kim JH, Chambliss GH (1997) Contacts between Bacillus subtilis catabolite regulatory protein CcpA and amyO target site. Nucleic Acids Res 25: 3490-3496.
  • Kim JH, Guvener ZT, Cho JY, Chung KC, Chambliss GH (1995) Specificity of DNA binding activity of the Bacillus subtilis catabolite control protein CcpA. J Bacteriol 177: 5129-5134.
  • Kowalczyk M, Bardowski J (2003) Overproduction and purification of the CcpA protein from Lactococcus lactis. Acta Biochim Polon 50: 455-459.
  • Kraus A, Kuster E, Wagner A, Hoffmann K, Hillen W (1998) Identification of a co-repressor binding site in catabolite control protein CcpA. Mol Microbiol 30: 955-963.
  • Loll B, Kowalczyk M, Alings C, Chieduch A, Bardowski J, Saenger W, Biesiadka J (2007) Crystal structure of transcription regulator CcpA of Lactococcus lactis. Acta Crystallogr D Biol Crystallogr 63: 431-436.
  • Luesink EJ, van Herpen RE, Grossiord BP, Kuipers OP, de Vos WM (1998) Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol Microbiol 30: 789-798.
  • Mahr K, Esteban CD, Hillen W, Titgemeyer F, Perez-Martinez G (2002) Cross communication between components of carbon catabolite repression of Lactobacillus casei and Bacillus subtilis. J Mol Microbiol Biotechnol 4: 489-494.
  • Miwa Y, Fujita Y (1990) Determination of the cis sequence involved in catabolite repression of the Bacillus subtilis gnt operon; implication of a consensus sequence in catabolite repression in the genus Bacillus. Nucleic Acids Res 18: 7049-7053.
  • Miwa Y, Saikawa M, Fujita Y (1994) Possible function and some properties of the CcpA protein of Bacillus subtilis. Microbiology 140: 2567-2575.
  • Monedero V, Gosalbes MJ, Perez-Martinez G (1997) Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA. J Bacteriol 179: 6657-6664.
  • Nicholson WL, Park YK, Henkin TM, Won M, Weickert MJ, Gaskell JA, Chambliss GH (1987) Catabolite repression-resistant mutations of the Bacillus subtilis alpha-amylase promoter affect transcription levels and are in an operator-like sequence. J Mol Biol 198: 609-618.
  • Peitsch MC (1995) Protein modeling by E-mail. Bio/Technology 13: 658-660.
  • Presecan-Siedel E, Galinier A, Longin R, Deutscher J, Danchin A, Glaser P, Martin-Verstraete I (1999) Catabolite regulation of the pta gene as part of carbon flow pathways in Bacillus subtilis. J Bacteriol 181: 6889-6897.
  • Ramseier TM, Reizer J, Kuster E, Hillen W, Saier MH Jr (1995) In vitro binding of the CcpA protein of Bacillus subtilis to cis-acting catabolite responsive elements (CREs) of gram-positive bacteria. FEMS Microbiol Lett 129: 207-213.
  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
  • Schick J, Weber B, Klein JR, Henrich B (1999) PepR1, a CcpA-like transcription regulator of Lactobacillus delbrueckii subsp. lactis. Microbiology 145: 3147-3154.
  • Schumacher MA, Allen GS, Diel M, Seidel G, Hillen W, Brennan RG (2004) Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Cell 118: 731-741.
  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31: 3381-3385.
  • Titgemeyer F, Hillen W (2002) Global control of sugar metabolism: a gram-positive solution. Antonie van Leeuwenhoek 82: 59-71.
  • Weickert MJ, Adhya S (1992) A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem 267: 15869-15874.
  • Weickert MJ, Chambliss GH (1990) Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci USA 87: 6238-6242.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv54p71kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.