Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2006 | 53 | 4 | 739-745

Article title

The YJL185C, YLR376C and YJR129C genes of Saccharomyces cerevisiae are probably involved in regulation of the glyoxylate cycle

Content

Title variants

Languages of publication

EN

Abstracts

EN
The ER24 aci (acidification) mutant of Saccharomyces cerevisiae excreting protons in the absence of glucose was transformed with a multicopy yeast DNA plasmid library. Three different DNA fragments restored the wild-type phenotype termed Aci- because it does not acidify the complete glucose medium under the tested conditions. Molecular dissection of the transforming DNA fragments identified two multicopy suppressor genes YJL185C, YJR129C and one allelic YLR376C. Disruption of either of the three genes in wild-type yeast strain resulted in acidification of the medium (Aci+ phenotype) similarly to the original ER24 mutant. These data indicate the contribution of the ER24 gene product Ylr376Cp and of the two suppressor gene products Yjl185Cp and Yjr129Cp to a complex regulation of the glyoxylate cycle in yeast.

Year

Volume

53

Issue

4

Pages

739-745

Physical description

Dates

published
2006
received
2006-02-20
revised
2006-10-16
accepted
2006-10-18
(unknown)
2006-12-04

Contributors

  • Department of Biotechnology and Molecular Biology, University of Opole, Opole, Poland
  • Institute of Genetics and Microbiology, Wroclaw University, Wrocław, Poland
  • Institute of Biotechnology and Environmental Protection, University of Zielona Góra, Zielona Góra, Poland
  • Institute of Biotechnology and Environmental Protection, University of Zielona Góra, Zielona Góra, Poland
  • Institute of Genetics and Microbiology, Wroclaw University, Wrocław, Poland

References

  • Altschul SH, Gish W, Miller W, Myers W, Lipman J (1990) Basic local aligment search tool. J Mol Biol 215: 403-410.
  • Boniewska-Bernacka E, Lachowicz TM, Kotylak Z (1998) Genetical and biochemical characterization of Krebs cycle mutants in yeast. Acta Microbiol Pol 47: 131-140.
  • Bonneaud N, Ozier-Kalogeropoulos O, Li G, Labouesse M, Minvielle-Sebastia L, Lacroute F (1991) A family of low and hight copy replicative, integrative and single-stranded S. cerevisiae/E. coli shutte vectors. Yeast 7: 609-613.
  • Claisse M, Lachowicz TM, Sybirny A, Gonchar M, Boniewska E, Witkowska R (1992) Isolation and characterization of Krebs cycle mutants of yeast Saccharomyces cerevisiae. Yeast 8: 105.
  • Gietz RD, Woods RA (1998) Transformation of yeast by the lithium acetate/single-stranded carrier DNA/PEG method. Methods Microbiol 20: 53-66.
  • Goffeau A (2000) Four years of post-genomic life with 6000 yeast genes. FEBS Lett 480: 37-41.
  • Gonchar M, Lachowicz TM, Sybirny A, Witkowska R, Zakowska Z (1990) Genetics, physiology and biochemistry of some Saccharomyces cerevisiae mutants excreting acidic products. In Genetics of Respiratory Enzymes in Yeast. pp 53-64. Wroclaw University Press, Wrocław.
  • Grochowalska R, Machnicka B, Wysocki R, Lachowicz TM (2003) The genetic characteristics Saccharomyces cerevisiae aci(+) mutants. Cell Mol Biol Lett 8: 261-268.
  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557-580.
  • Haworth R, Lemire B, Crandall D, Cragoe E, Fliegel L (1991) Characterization of proton fluxes across the cytoplasmic membrane of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1098: 79-89.
  • Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425: 686-691.
  • Kok J, Muller JL, Slater EC (1975) EPR studies on the respiratory chain of wild type Saccharomyces cerevisiae and mutants with deficiency in succinate dehydrogenase. Biochim Biophys Acta 387: 441-450.
  • Machnicka B, Grochowalska R, Lipiński T, Boniewska E, Słomińska L, Lachowicz TM (2002) An identification of the products excreted by Saccharomyces cerevisiae aci+> mutants (acidifying growth media). Cell Mol Biol Lett 7: 304.
  • Machnicka B, Grochowalska R, Boniewska-Bernacka E, Słominska L, Lachowicz TM (2004) Acid excreting mutants of yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 325: 1030-1036.
  • Radomski R, Radomska M, Szajnowska K, Wisialski Z (1995) Microcomputer-controlled electrochemical universal meter. Computers Chem Res 7: 40-46.
  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning. A Laboratory Manual. 2nd edn, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  • Sanger F, Nicklen S, Coulson A (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463-5467.
  • Sherman F, Fink GR, Hicks JB (1987) Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor NewYork.
  • Shor E, Weinstein J, Rothstein R (2005) A genetic screen for top3 suppressors in Saccharomyces cerevisiae identifies SHU1, SHU2, PSY3 and CSM2: Four genes involved in error-free DNA repair. Genetics 169: 1275-1289.
  • Sigler K, Hofer M (1991) Mechanism of acid extrusion in yeast. Biochim Biophys Acta 1071: 375-391.
  • Sigler K, Knotkova A, Kotyk A (1981) Factors governing substrate induced generation and extrusion of protons in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 643: 572-582.
  • Wakem L, Sherman F (1990) Chromosomal assignment of mutations by specific chromosome loss in the yeast Saccharomyces cerevisiae. Genetics 125: 333-340.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv53p739kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.