Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2006 | 53 | 4 | 721-727

Article title

Sequence-specific Ni(II)-dependent peptide bond hydrolysis in a peptide containing threonine and histidine residues

Content

Title variants

Languages of publication

EN

Abstracts

EN
Previously we demonstrated that Ni(II) complexes of Ac-Thr-Glu-Ser-His-His-Lys-NH2 hexapeptide, representing residues 120-125 of human histone H2A, and some of its analogs undergo E-S peptide bond hydrolysis. In this work we demonstrate a similar coordination and reactivity pattern in Ni(II) complexes of Ac-Thr-Glu-Thr-His-His-Lys-NH2, its threonine analogue, studied using potentiometry, electronic absorption spectroscopy and HPLC. For the first time we present the detailed temperature and pH dependence of such Ni(II)-dependent hydrolysis reactions. The temperature dependence of the rate of hydrolysis yielded activation energy Ea = 92.0 kJ mol-1 and activation entropy ΔS≠ = 208 J mol-1 K-1. The pH profile of the reaction rate coincided with the formation of the four-nitrogen square-planar Ni(II) complex of Ac-Thr-Glu-Thr-His-His-Lys-NH2. These results expand the range of protein sequences susceptible to Ni(II) dependent cleavage by those containing threonine residues and permit predictions of the course of this reaction at various temperatures and pH values.

Year

Volume

53

Issue

4

Pages

721-727

Physical description

Dates

published
2006
received
2006-07-19
revised
2006-10-31
accepted
2006-11-02
(unknown)
2006-11-22

Contributors

  • Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, USA
  • University of Ioannina, Department of Chemistry, Ioannina, Greece
author
  • Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
author
  • Central Institute of Labour Protection-National Research Institute, Warszawa, Poland

References

  • Bal W, Chmurny GN, Hilton BD, Sadler PJ, Tucker A (1996) Axial hydrophobic fence in highly stable Ni(II) complex of des-angiotensinogen N-terminal peptide. J Am Chem Soc 118: 4727-4728.
  • Bal W, Lukszo J, Bialkowski K, Kasprzak KS (1998) Interactions of nickel(II) with histones: interactions of Ni(II) with CH3CO-Thr-Glu-Ser-His-His-Lys-NH2, a peptide modeling the potential metal binding site in the 'C-tail' region of histone H2A. Chem Res Toxicol 11: 1014-1023.
  • Bal W, Liang R, Lukszo J, Lee S-H, Dizdaroglu M, Kasprzak KS (2000a) Ni(II) specifically cleaves the C-terminal tail of the major variant of histone H2A and forms an oxidative damage-mediating complex with the cleaved octapeptide. Chem Res Toxicol 13: 616-624.
  • Bal W, Wójcik J, Maciejczyk M, Grochowski P, Kasprzak KS (2000b) Induction of a secondary structure in the N-terminal pentadecapeptide of human protamine HP2 through Ni(II) coordination. An NMR study. Chem Res Toxicol 13: 823-830.
  • Chan WC, White PD, eds (2000) Fmoc Solid Phase Peptide Synthesis. A Practical Approach, Oxford University Press, New York.
  • Fields GB, ed. (1997) Solid Phase Synthesis. Methods Enzymol 289.
  • Gans P, Sabatini A, Vacca A (1985) SUPERQUAD: An improved general program for computation of formation constants from potentiometric data. J Chem Soc, Dalton Trans 1195-1199.
  • Hammel EF Jr, Glasstone S (1954) Physicochemical studies of the simpler polypeptides. III. The acid- and base- catalyzed hydrolysis of di-, tri-, tetra-, penta- and hexaglycine. J Am Chem Soc 76: 3741-3745.
  • Hartmann H, Heintges J, Jung H, Heidberg J (1962) Untersuchungen über die Kinetik der Spaltung von Di- und Tripeptiden. Z Naturforsch 17b: 143-149.
  • Irving H, Miles MG, Pettit LD (1967) A study of some problems in determining the stoichiometric proton dissociation constants of complexes by potentiometric titrations using a glass electrode. Anal Chim Acta 38: 475-488.
  • Kaczmarek P, Jeżowska-Bojczuk M, Gatner K, Bal W (2005) Oxidative reactivity of Cu-TESHHK- and its alanine analogues. Dalton Trans 1985-1988.
  • Karaczyn AA, Bal W, North SL, Bare RM, Hoang VM, Fisher RJ, Kasprzak KS (2003) The octapeptidic end of the C-terminal tail of histone H2A is cleaved-off in cells exposed to carcinogenic Ni(II). Chem Res Toxicol 16: 1555-1559.
  • Kozłowski H, Bal W, Dyba M, Kowalik-Jankowska T (1999) Specific structure-stability relations in metallopeptides. Coord Chem Rev 184: 319-346.
  • Meyer A, Jones N, Lin Y, Kranbuehl D (2002) Characterizing and modeling the hydrolysis of polyamide-11 in a pH 7 water environment. Macromolecules 35: 2784-2798.
  • Mylonas M, Krężel A, Plakatouras JC, Hadjiliadis N, Bal W (2002a) The binding of Ni(II) ions to the peptides derived from the metal binding motif of histone H2A. J Chem Soc, Dalton Trans 4296-4306.
  • Mylonas M, Plakatouras JC, Hadjiliadis N, Krężel A, Bal W (2002b) Potentiometric and spectroscopic studies of the interaction of Cu(II) ions with the hexapeptides AcThrAlaSerHisHisLysNH2>, AcThrGluAlaHisHisLysNH2>, AcThrGluSerAlaHisLysNH2> and AcThrGluSerHisAlaLysNH2>, models of C-terminal tail of histone H2A. Inorg Chim Acta 339: 60-70.
  • Mylonas M, Krężel A, Plakatouras JC, Hadjiliadis N, Bal W (2004a) Interactions of Zn(II) ions with three His-containing peptide models of histone H2A. Bioinorg Chem Appl 2: 125-140.
  • Mylonas M, Plakatouras JC, Hadjiliadis N (2004b) Interactions of Ni(II) and Cu(II) ions with the hydrolysis products of the C-terminal -ESHH-motif of histone H2A model peptides. Association of the stability of the complexes formed with the cleavage of the -ES-bond. Dalton Trans 4152-4160.
  • Mylonas M, Krężel A, Plakatouras JC, Hadjiliadis N, Bal W (2005a) Interactions of transition metal ions with His-containing peptide models of histone H2A. J Mol Liq 118: 119-129.
  • Mylonas M, Plakatouras JC, Hadjiliadis N, Papavasileiou KD, Melissas VS (2005b) An extremely stable Ni(II) complex derived from the hydrolytic cleavage of the C-terminal tail of histone H2A. J Inorg Biochem 99: 637-643.
  • Radzicka A, Wolfenden R (1996) Rates of uncatalyzed peptide bond hydrolysis in neutral solution and the transition state affinities of proteases J Am Chem Soc 118: 6105-6109.
  • Raycheba JMT, Margerum DW (1980) Effect of non-coordinative axial blocking on the stability and kinetic behavior of ternary 2,6-lutidine-nickel(II)-oligopeptide complex. Inorg Chem 19: 837-843.
  • Sigel H, Martin RB (1982) Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem Rev 82: 385-426.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv53p721kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.