Preferences help
enabled [disable] Abstract
Number of results
2006 | 53 | 4 | 651-662
Article title

The nuclear factor-kappaB (NF-κB): from a versatile transcription factor to a ubiquitous therapeutic target

Title variants
Languages of publication
The nuclear factor-kappaB (NF-κB) transcription factors regulate a plethora of cellular pathways and processes including the immune response, inflammation, proliferation, apoptosis and calcium homeostasis. In addition to the complexity of its physiological roles, the composition and function of this family of proteins is very complicated. While the basic understanding of NF-κB signalling is extensive, relatively little is know of the in vivo dynamics of this pathway or what controls the balance between various outcomes. Although we know a large number of NF-κB-responsive genes, the contribution of these genes to a specific response is not always clear. Finally, the involvement of NF-κB in pathological processes is only now beginning to be unravelled. In addition to cancer and immunodeficiency disorders, altered regulation of NF-κB has been associated with several inherited diseases. These findings indicate that modulation of the NF-κB pathways may be beneficial. However, our limited knowledge of NF-κB signalling hinders therapeutic approaches: in many situations it is not clear whether the enhancement or inhibition of NF-κB activity would be beneficial or which pathways to interfere with and what the required level of activation is. Further studies of the role of NF-κB are needed as these may result in novel therapeutic strategies for a wide variety of diseases.
Physical description
  • Molecular Medicine, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
  • Molecular Medicine, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
  • Acharyya S, Butchbach ME, Sahenk Z, Wang H, Saji M, Carathers M, Ringel MD, Skipworth RJ, Fearon KC, Hollingsworth MA, Muscarella P, Burghes AH, Rafael-Fortney JA, Guttridge DC (2005) Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia. Cancer Cell 8: 421-432.
  • Agou F, Ye F, Goffinont S, Courtois G, Yamaoka S, Israel A (2002) NEMO Trimerizes through Its coiled-coil C-terminal domain. J Biol Chem 277: 17464-17475.
  • Agou F, Courtois G, Chiaravalli J, Baleux F, Coic YM, Traincard F, Israel A, Veron M (2004) Inhibition of NF-kappa B activation by peptides targeting NF-kappa B essential modulator (nemo) oligomerization. J Biol Chem 279: 54248-54257.
  • Aradhya S, Nelson DL (2001) NF-κB signaling and human disease. Curr Opin Genet Dev 11: 300-306.
  • Aradhya S, Woffendin H, Jakins T, Bardaro T, Esposito T, Smahi A (2001) A recurrent deletion in the ubiquitously expressed NEMO (IKK-gamma) gene accounts for the vast majority of incontinentia pigmenti mutations. Hum Mol Genet 10: 2171-2179.
  • Baghdiguian S, Martin M, Richard I, Pons F, Astier C, Bourg N, Hay RT, Chemaly R, Halaby G, Loiselet J, Anderson LV, Lopez de Munain A, Fardeau M, Mangeat P, Beckmann JS, Lefranc G (1999) Calpain 3 deficiency is associated with myonuclear apoptosis and profound perturbation of the IkappaB alpha/NF-kappaB pathway in limb-girdle muscular dystrophy type 2A. Nat Med 5: 503-511.
  • Beinke S, Belich MP, Ley SC (2002) The death domain of NF-κB1 p105 is essential for signal-induced p105 proteolysis J Biol Chem 277: 24162-24168.
  • Beinke S, Ley SC (2004) Functions of NF-κB1 and NF-κB2 in immune cell biology. Biochem J 382: 393-409.
  • Bender K, Gottlicher M, Whiteside S, Rahmsdorf HJ, Herrlich P (1998) Sequential DNA damage-independent and -dependent activation of NF-kappaB by UV. EMBO J 17: 5170-5181.
  • Blackwell TS, Stecenko AA, Christman JW (2001) Dysregulated NF-κB activation in cystic fibrosis: evidence for a primary inflammatory disorder. Am J Physiol Lung Cell Mol Physiol 281: L69-70.
  • Bonizzi G, Karin M (2004) The two NF-κB pathways and their role in innate and adaptive immunity. Trends Immunol 25: 280-288.
  • Bonizzi G, Bebien M, Otero DC, Johnson-Vroom KE, Cao Y, Vu D, Jegga AG, Aronow BJ, Ghosh G, Rickert RC, Karin M (2004) Activation of IKKalpha target genes depends on recognition of specific kappaB binding sites by RelB:p52 dimers. EMBO J 23: 4202-4210.
  • Burns KA, Martinon F (2004) Inflammatory diseases: is ubiquitinated NEMO at the Hub? Curr Biol 14: R1040-1042.
  • Campbell KJ, Rocha S, Perkins ND (2004) Active repression of antiapoptotic gene expression by RelA(p65) NF-κB. Mol Cell 13: 853-65.
  • Chen F, Castranova V, Shi X (2001) New insights into the role of nuclear factor-κB in cell growth regulation. Am J Pathol 159: 387-397.
  • Christman JW, Sadikot RT, Blackwell TS (2000) The role of nuclear factor-κB in pulmonary diseases. Chest 117: 1482-1487.
  • Courtois G (2005) The NF-kappaB signalling pathway in human genetic diseases. Cell Mol Life Sci 62: 1682-1691.
  • Deloukas P, van Loon AP (1993) Genomic organization of the gene encoding the p65 subunit of NF-kappa-B: multiple variants of the p65 protein may be generated by alternative splicing. Hum Mol Genet 2: 1895-1900.
  • Devin A, Lin Y, Yamaoka S, Li ZW, Karin M, Liu ZG (2001) The α and β subunits of IκB kinase (IKK) mediate TRAF2-dependent IKK recruitment to tumour necrosis factor (TNF) receptor 1 in response to TNF. Mol Cell Biol 21: 3986-3994.
  • Dolcet X, Llobet D, Pallares J, Matias-Guiu X (2005) NF-kB in development and progression of human cancer. Virchows Arch 446: 475-482.
  • Eldor R, Yeffet A, Baum K, Doviner V, Amar D, Ben-Neriah Y, Christofori G, Peled A, Carel JC, Boitard C, Klein T, Serup P, Eizirik DL, Melloul D (2006) Conditional and specific NF-kappaB blockade protects pancreatic beta cells from diabetogenic agents. Proc Natl Acad Sci USA 103: 5072-5077.
  • Everhart MB, Han W, Sherrill TP, Arutiunov M, Polosukhin VV, Burke JR, Sadikot RT, Christman JW, Yull FE, Blackwell TS (2006) Duration and intensity of NF-kappaB activity determine the severity of endotoxin-induced acute lung injury. J Immunol 176: 4995-5005.
  • Garcia-Martinez C, Llovera M, Agell N, Lopez-Soriano FJ, Argiles JM (1995) Ubiquitin gene expression in skeletal muscle is increased during sepsis: involvement of TNF-alpha but not IL-1. Biochem Biophys Res Commun 217: 839-844.
  • Gilmore TD, Koedood M, Piffat KA, White DW (1996) Rel/NF- B/I B proteins and cancer. Oncogene 13: 1367-1378.
  • Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37: 1974-1984.
  • Gosselin K, Abbadie C (2003) Involvement of Rel/NF-κB transcription factors in senescence. Exp Gerontol 38: 1271-1283.
  • Guo Q, Robinson N, Mattson MP (1998) Secreted β-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NF-κB and stabilization of calcium homeostasis. J Biol Chem 273: 12341-12351.
  • Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr (1999) NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 19: 5785-5799.
  • Hayden MS, Ghosh S (2004) Signalling to NF-κB. Genes Dev 18: 2195-2224.
  • Herrmann O, Baumann B, de Lorenzi R, Muhammad S, Zhang W, Kleesiek J, Malfertheiner M, Kohrmann M, Potrovita I, Maegele I, Beyer C, Burke JR, Hasan MT, Bujard H, Wirth T, Pasparakis M, Schwaninger M (2005) IKK mediates ischemia-induced neuronal death. Nat Med 11: 1322-1329.
  • Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M (1999) NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol 19: 2690-2698.
  • Hong GS, Jung YK (2002) Caspase recruitment domain (CARD) as a bi-functional switch of caspase regulation and NF-κB signals. J Biochem Mol Biol 35: 19-23.
  • Huang TT, Feinberg SL, Suryanarayanan S, Miyamoto S (2002) The zinc finger domain of NEMO is selectively required for NF-κB activation by UV radiation and topoisomerase inhibitors. Mol Cell Biol 22: 5813-5825.
  • Hudson VM (2001) Rethinking cystic fibrosis pathology: the critical role of abnormal reduced glutathione (GSH) transport caused by CFTR mutation. Free Radic Biol Med 30: 1440-1461.
  • Hunter RB, Stevenson EJ, Koncarevic A, Mitchell-Felton H, Essig DA, Kandarian SC (2002) Activation of an alternative NF-κB pathway in skeletal muscle during disuse atrophy. FASEB J 16: 529-538.
  • Jimi E, Ghosh S (2005) Role of nuclear factor-kappaB in the immune system and bone. Immunol Rev 208: 80-87.
  • Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441: 431-36.
  • Kato T Jr, Delhase M, Hoffmann A, Karin M (2003) CK2 Is a C-terminal iκb kinase responsible for NF-κB activation during the UV response. Mol Cell 12: 829-839.
  • Kim HJ, Hawke N, Baldwin AS (2006) NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ 13: 738-747.
  • Kumar A, Boriek AM (2003) Mechanical stress activates the nuclear factor-kappaB pathway in skeletal muscle fibres: a possible role in Duchenne muscular dystrophy. FASEB J 17: 386-396.
  • Lang V, Janzen J, Fischer GZ, Soneji Y, Bainke S, Salmeron A (2003) βTrCP-mediated proteolysis of NF-κB1 p105 requires phosphorylation of p105 serines 927 and 932. Mol Cell Biol 23: 402-413.
  • Lang H, Schulte BA, Zhou D, Smythe N, Spicer SS, Schmiedt RA (2006) Nuclear factor κB deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. J Neurosci 26: 3541-3550.
  • Langen RCJ, Schols AMWJ, Kelders MCJM, Wouters EFM, Janssen-Heininger >YMW (2001) Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-κB. FASEB J 15: 1169-1180.
  • Lavigne MD, Pohlschmidt M, Novo JF, Higgins B, Alakhov V, Lochmuller H, Sakuraba H, Goldspink G, MacDermot K, Gorecki DC (2005) Promoter dependence of plasmid-pluronics targeted α galactosidase a expression in skeletal muscle of fabry mice. Mol Ther 5: 12.
  • Lee NK, Lee SY (2002) Modulation of life and death by the tumor necrosis factor receptor-associated factors (TRAFs). J Biochem Mol Biol 35: 61-66.
  • Lenardo MJ, Baltimore D (1989) NF-kappa B: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58: 227-229.
  • Li Q, Verma IM (2002) NF-κB regulation in the immune system. Nat Rev Immunol 2: 725-734.
  • Li XH, Fang XQ, Gaynor RB (2001) Role of IKKγ/NEMO in assembly of the IκB kinase complex. J Biol Chem 276: 4494-4500.
  • Liou HC (2002) Regulation of the immune system by NF-κB and IκB. J Biochem Mol Biol 35: 537-546.
  • Llovera M, Garcia-Martinez C, Agell N, Lopez-Soriano FJ, Argiles JM (1997) TNF can directly induce the expression of ubiquitin-dependent proteolytic system in rat soleus muscles. Biochem Biophys Res Commun 230: 238-241.
  • Lovering RM, Porter NC, Bloch RJ (2005) The muscular dystrophies: from genes to therapies. Phys Ther 85: 1372-1388.
  • Martinez-Pomar N, Munoz-Saa I, Heine-Suner D, Martin A, Smahi A, Matamoros N (2005) A new mutation in exon 7 of NEMO gene: late skewed X-chromosome inactivation in an incontinentia pigmenti female patient with immunodeficiency. Hum Genet 118: 458-465.
  • Mathew S, Murty VV, Dalla-Favera R, Chaganti RS (1993) Chromosomal localization of genes encoding the transcription factors, c-rel, NF-kappa-Bp50, NF-kappa-Bp65, and lyt-10 by fluorescence in situ hybridization. Oncogene 8: 191-193.
  • Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278: 818-819.
  • Messina S, Bitto A, Aguennouz M, Minutoli L, Monici MC, Altavilla D, Squadrito F, Vita G (2006) Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in Mdx mice. Exp Neurol 198: 234-241.
  • Michou L, Collet C, Laplanche JL, Orcel P, Cornelis F (2006) Genetics of Paget's disease of bone. Joint Bone Spine 73: 243-248.
  • Minasian C, McCullagh A, Bush A (2005) Cystic fibrosis in neonates and infants. Early Hum Dev 81: 997-1004.
  • Nowak KJ, Davies KE (2004) Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep 5: 872-876.
  • Papa S, Bubici C, Zazzeroni F, Pham CG, Kuntzen C, Knabb JR, Dean K, Franzoso G (2006) The NF-κB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ 13: 712-729.
  • Pikarsky E, Ben-Neriah Y (2006) NF-kappaB inhibition: a double-edged sword in cancer? Eur J Cancer 42: 779-784.
  • Poyet JL, Srinivasula SM, Lin JH, Fernades-Alnemri T, Yamaoka S, Tsichilis PN, Alnemri ES (2000) Activation of the IκB kinases by RIP via IKKγ/NEMO-mediated oligomerization. J Biol Chem 275: 37966-37977.
  • Puel A, Picard C, Ku CL, Smahi A, Casanova JL (2004) Inherited disorders of NF-kappaB-mediated immunity in man. Curr Opin Immunol 16: 34-41.
  • Radhakrishnan SK, Kamalakaran S (2006) Pro-apoptotic role of NF-κB: implications for cancer therapy. Biochim Biophys Acta 1766: 53-62.
  • Regnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M (1997) Identification and characterization of an IκB Kinase. Cell 90: 373-383.
  • Reid MB, Li YP (2001) Tumor necrosis factor-α and muscle wasting: a cellular perspective. Respir Res 2: 269-272.
  • Reynaert NL, Ckless K, Korn SH, Vos N, Guala AS, Emiel FM, Wouters EFM, van der Vliet A, Janssen-Heininger YMW (2004) Nitric oxide represses inhibitory κB kinase through S-nitrosylation. Proc Natl Acad Sci USA 101: 8945-8950.
  • Rice NR, MacKichan ML, Israel A (1992) The precursor of NF-κB p50 has IκB-like functions. Cell 71: 243-253.
  • Roman-Blas JA, Jimenez SA (2006) NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage 14: 839-848.
  • Rousiere M, Michou LT, Cornelis F, Orcel P (2003) Pagets's disease of bone. Best Pract Res Clin Rheum 17: 1019-1041.
  • Schmid JM, Junge SA, Hossle JP, Schneider EM, Roosnek E, Seger RA, Gungor T (2006) Transient hemophagocytosis with deficient cellular cytotoxicity, monoclonal immunoglobulin M gammopathy, increased T-cell numbers, and hypomorphic NEMO mutation. Pediatrics 117: e1049-1056.
  • Schottelius AJ, Dinter H (2006) Cytokines, NF-kappaB, microenvironment, intestinal inflammation and cancer. Cancer Treat Res 130: 67-87.
  • Shishodia S, Aggarwal BB (2002) Nuclear factor-κB activation: a question of life or death. J Biochem Mol Biol 35: 28-40.
  • Siebenlist U, Brown K, Claudio E (2005) Control of Lymphocyte development by nuclear factor κ-B. Nat Rev Immunol 5: 435-445.
  • Smahi A, Courtois G, Rabia SH, Doffinger R, Bodemer C, Munnich A (2002) The NF-κB signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum Mol Genet 11: 2371-2375.
  • Sriadibhatla S, Yang Z, Gebhart C, Alakhov VY, Kabanov A (2005) Transcriptional activation of gene expression by pluronic block copolymers in stably and transiently transfected cells. Mol Ther 13: 804-813.
  • Tergaonkar V, Bottero V, Ikawa M, Li Q, Verma IM (2003) IkappaB kinase-independent IkappaBalpha degradation pathway: functional NF-κB activity and implications for cancer therapy. Mol Cell Biol 23: 8070-8083.
  • Thaloor D, Miller KJ, Gephart J, Mitchell PO, Pavlath GK (1999) Systemic administration of the NF-κB inhibitor curcumin stimulates muscle regeneration after traumatic injury. Am J Physiol 277: C320-329.
  • Torchinsky A, Lishanski L, Wolstein O, Shepshelovich J, Orenstein H, Savion S (2002) NF-κB DNA-binding activity in embryos responding to a teratogen, cyclophosphamide. BMC Dev Biol 2: 2.
  • Valerio A, Boroni F, Benarese M, Sarnico I, Ghisi V, Bresciani LG, Ferrario M, Borsani G, Spano P, Pizzi M (2006) NF-kappaB pathway: a target for preventing beta-amyloid (Abeta)-induced neuronal damage and Abeta42 production. Eur J Neurosci 23: 1711-1720.
  • Wada T, Nakashim T, Hiroshi N, Penninger JM (2006) RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 12: 17-25.
  • Wang Z, Sicinski P, Weinberg RA, Zhang Y, David K (1996) Characterization of the mouse cyclin D3 gene: exon/intron organization and promoter activity. Genomics 35: 156-163.
  • Weber AJ, Soong G, Bryan R, Saba S, Prince A (2001) Activation of NF-κB in airway epithelial cells is dependent on CFTR trafficking and Cl-> channel function. Am J Physiol Lung Cell Mol Physiol 281: L71-78.
  • Weih F, Caamona J (2003) Regulation of secondary lymphoid organ development by the nuclear factor-κB signal transduction pathway. Immunol Rev 195: 91-105.
  • Xiao W (2004) Advances in NF-kappaB signaling transduction and transcription. Cell Mol Immunol 1: 425-435.
  • Zhang W, Potrovita I, Tarabin V, Herrmann O, Beer V, Weih F, Schneider A, Schwaninger M (2005) Neuronal activation of NF-κB contributes to cell death in cerebral ischemia. J Cereb Blood Flow Metab 25: 30-40.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.