Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2006 | 53 | 4 | 627-640

Article title

Structural aspects of l-asparaginases, their friends and relations

Content

Title variants

Languages of publication

EN

Abstracts

EN
Enzymes capable of converting l-asparagine to l-aspartate can be classified as bacterial-type or plant-type l-asparaginases. Bacterial-type l-asparaginases are further divided into subtypes I and II, defined by their intra-/extra-cellular localization, substrate affinity, and oligomeric form. Plant-type l-asparaginases are evolutionarily and structurally distinct from the bacterial-type enzymes. They function as potassium-dependent or -independent Ntn-hydrolases, similar to the well characterized aspartylglucosaminidases with (αβ)2 oligomeric structure. The review discusses the structural aspects of both types of l-asparaginases and highlights some peculiarities of their catalytic mechanisms. The bacterial-type enzymes are believed to have a disordered active site which gets properly organized on substrate binding. The plant-type enzymes, which are more active as isoaspartyl aminopeptidases, pose a chemical challenge common to other Ntn-hydrolases, which is how an N-terminal nucleophile can activate itself or cleave its own α-amide bond before the activation is even possible. The K+-independent plant-type l-asparaginases show an unusual sodium coordination by main-chain carbonyl groups and have a key arginine residue which by sensing the arrangement at the oligomeric (αβ)-(αβ) interface is able to discriminate among substrates presented for hydrolysis.

Year

Volume

53

Issue

4

Pages

627-640

Physical description

Dates

published
2006
received
2006-10-18
revised
2006-11-17
accepted
2006-11-24
(unknown)
2006-12-01

Contributors

  • Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznań, Poland
  • Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland

References

  • Abuchowski A, Kazo GM, Verhoest CR Jr, Van Es T, Kafkewitz D, Nucci ML, Viau AT, Davis FF (1984) Cancer therapy with chemically modified enzymes. I. Antitumor properties of polyethylene glycol-asparaginase conjugates. Cancer Biochem Biophys 7: 175-186.
  • Ammon HL, Weber IT, Wlodawer A, Harrison RW, Gilliland GL, Murphy KC, Sjolin L, Roberts J (1988) Preliminary crystal structure of Acinetobacter glutaminasificans glutaminase-asparaginase. J Biol Chem 263: 150-156.
  • Aslanian AM, Kilberg MS (2001) Multiple adaptive mechanisms affect asparagine synthetase substrate availability in asparaginase-resistant MOLT-4 human leukaemia cells. Biochem J 358: 59-67.
  • Aung HP, Bocola M, Schleper S, Röhm KH (2000) Dynamics of a mobile loop at the active site of Escherichia coli asparaginase. Biochim Biophys Acta 1481: 349-359.
  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28: 235-242.
  • Binda C, Bossi RT, Wakatsuki S, Arzt S, Coda A, Curti B, Vanoni MA, Mattevi A (2000) Cross-talk and ammonia channeling between active centers in the unexpected domain arrangement of glutamate synthase. Structure 8: 1299-1308.
  • Bonthron DT, Jaskolski M (1997) Why a 'benign' mutation kills enzyme activity. Structure-based analysis of the A176V mutant of Saccharomyces cerevisiae l-asparaginase I. Acta Biochim Polon 44: 491-504.
  • Borek D (2001) Structural and biochemical studies of asparaginases. Ph.D. Thesis, A. Mickiewicz University, Poznan.
  • Borek D, Jaskolski M (2000) Crystallization and preliminary crystallographic studies of a new l-asparaginase encoded by Escherichia coli genome. Acta Crystallogr D 56: 1505-1507.
  • Borek D, Jaskolski M (2001) Sequence analysis of enzymes with asparaginase activity. Acta Biochim Polon 48: 893-902.
  • Borek D, Podkowinski J, Kisiel A, Jaskolski M (1999) Isolation and characterization of cDNA encoding l-asparaginase from Lupinus luteus. Plant Physiol 119: 1568.
  • Borek D, Michalska K, Brzezinski K, Kisiel A, Podkowinski J, Bonthron DT, Krowarsch D, Otlewski J, Jaskolski M (2004) Expression, purification and catalytic activity of Lupinus luteus asparagine β-amidohydrolase and its Escherichia coli homolog. Eur J Biochem 271: 3215-3226.
  • Brannigan JA, Dodson G, Duggleby HJ, Moody PC, Smith JL, Tomchick DR, Murzin AG (1995) A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 378: 416-419.
  • Brese NE, O'Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr B 47: 192-197.
  • Broome J (1961) Evidence that the l-asparaginase activity of guinea pig serum is responsible for its antilymphoma effects. Nature 191: 1114-1115.
  • Bruneau L, Chapman R, Marsolais F (2006) Co-occurrence of both l-asparaginase subtypes in Arabidopsis. At3g16150 encodes a K+>-dependent l-asparaginase. Planta 224: 668-679.
  • Carter P, Wells JA (1988) Dissecting the catalytic triad of a serine protease. Nature 332: 564-568.
  • Clementi A (1922) La desamidation enzymatique de l'asparagine chez les differéntes espéces animals et la signification physiologique de sa presence dans l'organisme. Arch Intern Physiol 19: 369.
  • Derst C, Henseling J, Röhm KH (1992) Probing the role of threonine and serine residues of E. coli asparaginase II by site-specific mutagenesis. Protein Eng 5: 785-789.
  • Dodson G, Wlodawer A (1998) Catalytic triads and their relatives. Trends Biochem Sci 23: 347-352.
  • Duggleby HJ, Tolley SP, Hill CP, Dodson EJ, Dodson G, Moody PCE (1995) Penicillin acylase has a single-amino-acid catalytic center. Nature 373: 264-268.
  • Epp O, Steigemann W, Formanek H, Huber R (1971) Crystallographic evidence for the tetrameric subunit structure of l-asparaginase from Escherichia coli. Eur J Biochem 20: 432-437.
  • Fürth O, Friedmann M (1910) Über die Verbreitung asparaginspaltender Organfermente. Biochem Z 26: 435-440.
  • Geiger T, Clarke S (1987) Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem 262: 785-794.
  • Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386: 463-471.
  • Grover CE, Chibnall AC (1927) The enzymic deamidation of asparagine in the higher plants. Biochem J 21: 857-868.
  • Guan C, Liu Y, Shao Y, Cui T, Liao W, Ewel A, Whitaker R, Paulus H (1998) Characterization and functional analysis of the cis-autoproteolysis active center of glycosylasparaginase. J Biol Chem 273: 9695-9702.
  • Guo HC, Xu Q, Buckley D, Guan C (1998) Crystal structures of Flavobacterium glycosylasparaginase. An N-terminal nucleophile hydrolase activated by intramolecular proteolysis. J Biol Chem 273: 20205-20212.
  • Ho PP, Milikin EB, Bobbitt JL, Grinnan EL, Burck PJ, Frank BH, Boeck LD, Squires RW (1970) Crystalline l-asparaginase from Escherichia coli B. I. Purification and chemical characterization. J Biol Chem 245: 3708-3715.
  • Hsieh JJ, Cheng EH, Korsmeyer SJ (2003) Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 115: 293-303.
  • Isupov MN, Obmolova G, Butterworth S, Badet-Denisot MA, Badet B, Polikarpov I, Littlechild JA, Teplyakov A (1996) Substrate binding is required for assembly of the active conformation of the catalytic site in Ntn amidotransferases: evidence from the 1.8 Å crystal structure of the glutaminase domain of glucosamine 6-phosphate synthase. Structure 4: 801-810.
  • Khan JA, Dunn BM, Tong L (2005) Crystal structure of human taspase1, a crucial protease regulating the function of MLL. Structure 13: 1443-1452.
  • Kidd J (1953) Regression of transplanted lymphomas induced in vivo by means of normal guinea pig serum. I. Course of transplanted cancers of various kinds in mice and rats given guinea pig serum, horse serum or rabbit serum. J Exp Med 98: 565-581.
  • Kim Y, Yoon K, Khang Y, Turley S, Hol WG (2000) The 2.0 Å crystal structure of cephalosporin acylase. Structure Fold Des 8: 1059-1068.
  • Kumar RS, Brannigan JA, Prabhune AA, Pundle AV, Dodson GG, Dodson EJ, Suresh CG (2006) Structural and functional analysis of a conjugated bile salt hydrolase from Bifodobacterium longum reveals evolutionary relationship with penicillin V acylase. J Biol Chem 281: 32516-32525.
  • Lang S (1904) Über desamidierung im Tierkörper. Beitr chem Physiol Pathol 5: 321-345.
  • Larsen RA, Knox TM, Miller CG (2001) Aspartic peptide hydrolases in Salmonella enterica serovar Typhimurium. J Bacteriol 183: 3089-3097.
  • Löwe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268: 533-539.
  • Lubkowski J, Palm GJ, Gilliand GL, Derst C, Röhm KH, Wlodawer A (1996) Crystal structure and amino acid sequence of Wolinella succinogenes l-asparaginase. Eur J Biochem 241: 201-207.
  • Lubkowski J, Dauter M, Aghaiypour K, Wlodawer A, Dauter Z (2003) Atomic resolution structure of Erwinia chrysanthemi l-asparaginase. Acta Crystallogr D 59: 84-92.
  • Michalska K, Brzezinski K, Jaskolski M (2005) Crystal structure of isoaspartyl aminopeptidase in complex with l-aspartate. J Biol Chem 280: 28484-28491.
  • Michalska K, Bujacz G, Jaskolski M (2006) Crystal structure of plant asparaginase. J Mol Biol 360: 105-116.
  • Müller P, Kopke S, Sheldrick GM (2003) Is the bond-valence method able to identify metal atoms in protein structures? Acta Crystallogr D 59: 32-37.
  • Nayal M, Di Cera E (1996) Valence screening of water in protein crystals reveals potential Na+> binding sites. J Mol Biol 256: 228-234.
  • Noronkoski T, Stoineva IB, Ivanov IP, Petkov DD, Mononen I (1998) Glycosylasparaginase-catalyzed synthesis and hydrolysis of beta-aspartyl peptides. J Biol Chem 273: 26295-26297.
  • O'Connor CM, Clarke S (1985) Specific recognition of altered polypeptides by widely distributed methyltransferases. Biochem Biophys Res Commun 132: 1144-1150.
  • Oinonen C, Tikkanen R, Rouvinen J, Peltonen L (1995) Three-dimensional structure of human lysosomal aspartylglucosaminidase. Nat Struct Biol 2: 1102-1108.
  • Olovsson I, Jaskolski M (1986) Reaction coordinates for the proton transfer in some hydrogen bonds. Pol J Chem 60: 759-766.
  • Ortlund E, Lacount MW, Lewinski K, Lebioda L (2000) Reactions of Pseudomonas 7A glutaminase-asparaginase with diazo analogues of glutamine and asparagine result in unexpected covalent inhibitions and suggests an unusual catalytic triad Thr-Tyr-Glu. Biochemistry 39: 1199-1204.
  • Paetzel M, Dalbey RE (1997) Catalytic hydroxyl/amine dyads within serine proteases. Trends Biochem Sci 22: 28-31.
  • Palm GJ, Lubkowski J, Derst C, Schleper S, Röhm KH, Wlodawer A (1996) A covalently bound catalytic intermediate in Escherichia coli asparaginase: crystal structure of a Thr-89-Val mutant. FEBS Lett 390: 211-216.
  • Prahl A, Pazgier M, Hejazi M, Lockau W, Lubkowski J (2004) Structure of the isoaspartyl peptidase with l-asparaginase activity from Escherichia coli. Acta Crystallogr D 60: 1173-1176.
  • Qian X, Guan C, Guo HC (2003) A dual role for an aspartic acid in glycosylasparaginase autoproteolysis. Structure 11: 997-1003.
  • Roberts J (1976) Purification and properties of a highly potent antitumor glutaminase-asparaginase from Pseudomonas 7A. J Biol Chem 251: 2119-2123.
  • Rossocha M, Schultz-Heienbrok R, von Moeller H, Coleman JP, Saenger W (2005) Conjugated bile acid hydrolase is a tetrameric N-terminal thiol hydrolase with specific recognition of its cholyl but not tauryl product. Biochemistry 44: 5739-5748.
  • Saarela J, Oinonen C, Jalanko A, Rouvinen J, Peltonen L (2004) Autoproteolytic activation of human aspartylglucosaminidase. Biochem J 378: 363-371.
  • Schmitt E, Panvert M, Blanquet S, Mechulam Y (2005) Structural basis for tRNA-dependent amidotransferase function. Structure 13: 1421-1433.
  • Smith JL, Zaluzec EJ, Wery JP, Niu L, Switzer RL, Zalkin H, Satow Y (1994) Structure of the allosteric regulatory enzyme of purine biosynthesis. Science 264: 1427-1433.
  • Sodek L, Lea PJ, Miflin BJ (1980) Distribution and properties of a potassium-dependent asparaginase isolated from developing seeds of Pisum sativum and other plants. Plant Physiol 65: 22-26.
  • Song HK, Bochtler M, Azim MK, Hartmann C, Huber R, Ramachandran R (2003) Isolation and characterization of the prokaryotic proteasome homolog HslVU (ClpQY) from Thermotoga maritima and the crystal structure of HslV. Biophys Chem 100: 437-452.
  • Sousa MC, McKay DB (2001) Structure of Haemophilus influenzae HslV protein at 1.9 Å resolution, revealing a cation-binding site near the catalytic residue. Acta Crystallogr D 57: 1950-1954.
  • Stams WAG, den Boer ML, Holleman A, Appel IM, Beverloo HB, van Wering ER, Janka-Schaub GE, Evans WE, Pieters R (2005) Asparagine synthetase expression is linked with l-asparaginase resistance in TEl-AML1-negative but not TEl-AML1-positive pediatric acute lymphoblastic leukaemia. Blood 105: 4223-4225.
  • Sugimoto H, Odani S, Yamashita S (1998) Cloning and expression of cDNA encoding rat liver 60 kDa lysophospholipase containing an asparaginase-like region and ankyrin repeat. J Biol Chem 273: 12536-12542.
  • Suresh CG, Pundle AV, SivaRaman H, Rao KN, Brannigan JA, McVey CE, Verma CS, Dauter Z, Dodson EJ, Dodson GG (1999) Penicillin V acylase crystal structure reveals new Ntn-hydrolase family members. Nat Struct Biol 6: 414-416.
  • Suzuki H, Kumagai H (2002) Autocatalytic processing of gamma-glutamyltranspeptidase. J Biol Chem 277: 43536-43543.
  • Swain AL, Jaskolski M, Housset D, Rao JK, Wlodawer A (1993) Crystal structure of Escherichia coli l-asparaginase, an enzyme used in cancer therapy. Proc Natl Acad Sci USA 90: 1474-1478.
  • Tarentino AL, Maley F (1969) The enzymic synthesis of O-alpha-d-glucopyranosyl (1-6)-2-amino-2-deoxy-d-glucopyranose and its N-acetyl derivative. Arch Biochem Biophys 130: 80-85.
  • Tumbula DL, Becker HD, Chand WZ, Soll D (2000) Domain-specific recruitment of amide amino acids for protein synthesis. Nature 407: 106-110.
  • Willis RC, Woolfolk CA (1974) Asparagine utilization in Escherichia coli. J Bacteriol 118: 231-241.
  • Xu Q, Buckley D, Guan C, Guo HC (1999) Structural insights into the mechanism of intramolecular proteolysis. Cell 98: 651-661.
  • Xuan J, Tarentino AL, Grimwood BG, Plummer TH Jr, Cui T, Guan C, Van Roey P (1998) Crystal structure of glycosylasparaginase from Flavobacterium meningosepticum, Protein Sci 7: 774-781.
  • Yao M, Yasutake Y, Morita H, Tanaka I (2005) Structure of the type I l-asparaginase from the hyperthermophilic archaeon Pyrococcus horikoshii at 2.16 angstroms resolution. Acta Crystallogr D 61: 294-301.
  • Yoon J, Oh B, Kim K, Park J, Han D, Kim KK, Cha SS, Lee D, Kim Y (2004) A bound water molecule is crucial in initiating autocatalytic precursor activation in an N-terminal hydrolase. J Biol Chem 279: 341-347.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv53p627kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.