Journal
Article title
Title variants
Languages of publication
Abstracts
DsbA is the major oxidase responsible for generation of disulfide bonds in proteins of E. coli envelope. In the present work we provided the first detailed characterization of disulfide exchange between DsbA and its natural substrate, HtrA protease. We demonstrated that HtrA oxidation relies on DsbA, both in vivo and in vitro. We followed the disulfide exchange between these proteins spectrofluorimetrically and found that DsbA oxidizes HtrA with a 1 : 1 stoichiometry. The calculated second-order apparent rate constant (kapp) of this reaction was 3.3 × 104 ± 0.6 × 104 M-1s-1. This value was significantly higher than the values obtained for nonfunctional disulfide exchanges between DsbA and DsbC or DsbD and it was comparable to the kapp values calculated for in vitro oxidation of certain non-natural DsbA substrates of eukaryotic origin.
Publisher
Journal
Year
Volume
Issue
Pages
585-589
Physical description
Dates
published
2006
received
2006-03-20
revised
2006-08-30
accepted
2006-09-16
(unknown)
2006-10-01
Contributors
author
- Department of Biochemistry, University of Gdańsk, Gdańsk, Poland
author
- Department of Biochemistry, University of Gdańsk, Gdańsk, Poland
author
- Department of Biochemistry, University of Gdańsk, Gdańsk, Poland
References
- Churchward G, Belin D, Nagamine Y (1984) Gene 31: 165-171.
- Clausen T, Southan C, Ehrmann M (2002) Mol Cell 10: 443-455.
- Fabianek RA, Hennecke H, Thony-Meyer L (2000) FEMS Microbiol Rev 24: 303-316.
- Gill SC, Von Hippel PH (1989) Anal Biochem 182: 319-326.
- Grauschopf U, Fritz A, Glockshuber R (2003) EMBO J 22: 3503-3513.
- Henneke J, Sebel P, Glockshuber R (1999) J Mol Biol 286: 1197-1215.
- Hu HY, Cheng HQ, Li Q, Zou YS, Xu GJ (1999) J Protein Chem 18: 665-670.
- Jakob U, Muse W, Eser M, Bardwell JCA (1999) Cell 96: 341-352.
- Kishigami S, Akiyama Y, Ito K (1995) FEBS Lett 364: 55-58.
- Krojer T, Garrido-Franco M, Huber R, Ehrmann M, Clausen T (2002) Nature 416: 455-459.
- Laemmli UK (1970) Nature 227: 680-685.
- Lipinska B, Zylicz M, Georgopoulos C (1990) J Bacteriol 172: 1791-1797.
- Missiakas D, Raina S (1997) J Bacteriol 179: 2465-2471.
- Nakamoto H, Bardwell JCA (2004) Biochim Biophys Acta 1694: 111-119.
- Oberfelder R (1993) In Methods in Nonradioactive Detection (Howard GC ed), pp 83-85, Appleton & Lange, Norwalk, Connecticut.
- Rozhkova A, Stirnimann CU, Frei P, Graushopf U, Brunisholtz R, Grutter MG, Capitani G, Glockshuber R (2004) EMBO J 23: 1709-1719.
- Russel M, Model P (1984) J Bacteriol 159: 1034-1039.
- Skorko-Glonek J, Wawrzynow A, Krzewski K, Kurpierz K, Lipinska B (1995) Gene 163: 47-52.
- Skorko-Glonek J, Lipinska B, Krzewski K, Zolese G, Bertoli E, Tanfani F (1997) J Biol Chem 272: 8974-8982.
- Skorko-Glonek J, Zurawa D, Tanfani F, Scire A, Wawrzynow A, Narkiewicz J, Bertoli E, Lipinska B (2003) Biochim Biophys Acta 1649: 171-182.
- Sone M, Kishigami S, Yoshihisa T, Ito K (1997) J Biol Chem 272: 6174-6178.
- Spiess C, Beil A, Ehrmann M (1999) Cell 97: 339-347.
- Tabor S, Richardson CC (1985) Proc Natl Acad Sci USA 82: 1074-1078.
- Wunderlich M, Otto A, Seckler R, Glockshuber R (1993) Biochemistry 32: 12251-6.
- Wunderlich M, Glockhuber R (1993) Protein Sci 2: 717-726.
- Zapun A, Creighton TE (1994) Biochemistry 33: 5202-5211.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv53p585kz