PL EN


Preferences help
enabled [disable] Abstract
Number of results
2006 | 53 | 3 | 445-456
Article title

MID and UspA1/A2 of the human respiratory pathogen Moraxella catarrhalis, and interactions with the human host as basis for vaccine development

Content
Title variants
Languages of publication
EN
Abstracts
EN
Moraxella catarrhalis IgD-binding protein MID is a 200 kDa autotransporter protein that exists as a oligomer and is governed at the transcriptional level. The majority of M. catarrhalis clinical isolates expresses MID. Two functional domains have been attributed to MID; MID764-913 functions as an adhesin and promotes the bacteria to attach to epithelial cells, whereas the IgD-binding domain is located within MID962-1200. In parallel, MID is stimulatory for B lymphocytes through the IgD B cell receptor. M. catarrhalis ubiquitous surface proteins A1 and A2 (UspA1/A2) are multifunctional outer membrane proteins that can bind complement and extracellular matrix proteins such as vitronectin and fibronectin. An interaction between the complement fluid phase regulator of the classical pathway, C4b binding protein (C4BP), and UspA1/A2 has also been observed. Moreover, UspA1/A2 has a unique feature to interfere with the innate immune system of complement by binding C3. Taken together, a growing body of knowledge on M. catarrhalis outer membrane proteins MID and UspA1/A2 and their precise interactions with the human host make them promising vaccine candidates in a future multicomponent vaccin.
Publisher

Year
Volume
53
Issue
3
Pages
445-456
Physical description
Dates
published
2006
received
2006-06-05
revised
2006-08-30
accepted
2006-09-08
(unknown)
2006-09-09
Contributors
  • Medical Microbiology, Department of Laboratory Medicine, Lund University, Malmö University Hospital, Malmö, Sweden
  • Medical Microbiology, Department of Laboratory Medicine, Lund University, Malmö University Hospital, Malmö, Sweden
author
  • Medical Microbiology, Department of Laboratory Medicine, Lund University, Malmö University Hospital, Malmö, Sweden
References
  • Aebi C, Maciver I, Latimer JL, Cope LD, Stevens MK, Thomas SE, McCracken GH Jr, Hansen EJ (1997) A protective epitope of Moraxella catarrhalis is encoded by two different genes. Infect Immun 65: 4367-4377.
  • Aebi C, Lafontaine ER, Cope LD, Latimer JL, Lumbley SL, McCracken GH, Hansen EJ (1998) Phenotypic effect of isogenic uspA1 and uspA2 mutations on Moraxella catarrhalis 035E. Infect Immun 66: 3113-3119.
  • Andoh A, Fujiyama Y, Kimura T, Uchihara H, Sakumoto H, Okabe H, Bamba T (1997) Molecular characterization of complement components (C3, C4, and factor B) in human saliva. J Clin Immunol 17: 404-407.
  • Attia AS, Ram S, Rice PA, Hansen EJ (2006) Binding of vitronectin by the Moraxella catarrhalis UspA2 protein interferes with late stages of the complement cascade. Infect Immun 74: 1597-1611.
  • Banck G, Forsgren A (1978) Many bacterial species are mitogenic for human blood B lymphocytes. Scand J Immunol 8: 347-354.
  • Bartos LC, Murphy TF (1988) Comparison of the outer membrane proteins of 50 strains of Branhamella catarrhalis. J Infect Dis 158: 761-765.
  • Black AJ, Wilson TS (1988) Immunoglobulin G (IgG) serological response to Branhamella catarrhalis in patients with acute bronchopulmonary infections. J Clin Pathol 41: 329-333.
  • Bullard B, Lipski SL, Lafontaine ER (2005) Hag directly mediates the adherence of Moraxella catarrhalis to human middle ear cells. Infect Immun 73: 5127-5136.
  • Calvert JE, Calogeras A (1986) Characteristics of human B cells responsive to the T-independent mitogen Branhamella catarrhalis. Immunology 58: 37-41.
  • Catlin BW (1990) Branhamella catarrhalis: an organism gaining respect as a pathogen. Clin Microbiol Rev 3: 293-320.
  • Chen D, Barniak V, VanDerMeid KR, McMichael JC (1999) The levels and bactericidal capacity of antibodies directed against the UspA1 and UspA2 outer membrane proteins of Moraxella (Branhamella) catarrhalis in adults and children. Infect Immun 67: 1310-1316.
  • Chen D, McMichael JC, VanDerMeid KR, Hahn D, Mininni T, Cowell J, Eldridge J (1996) Evaluation of purified UspA from Moraxella catarrhalis as a vaccine in a murine model after active immunization. Infect Immun 64: 1900-1905.
  • Cheng Q, Finkel D, Hostetter MK (2000) Novel purification scheme and functions for a C3-binding protein from Streptococcus pneumoniae. Biochemistry 39: 5450-5457.
  • Cotter SE, Surana NK, St Geme 3rd JW (2005) Trimeric autotransporters: a distinct subfamily of autotransporter proteins. Trends Microbiol 13: 199-205.
  • Desvaux M, Parham NJ, Henderson IR (2004) The autotransporter secretion system. Res Microbiol 155: 53-60.
  • Fitzgerald M, Mulcahy R, Keane C, Coakley D, Scott T (1999) Transmission electron microscopy studies of Moraxella (Branhamella) catarrhalis. FEMS Immunol Med Microbiol 23: 57-66.
  • Forsgren A, Banck G, Grubb A (1980) Bacteria-immunoglobulin-lymphocyte interactions - new aspects. Scand J Infect Dis Suppl 24: 112-118.
  • Forsgren A, Penta A, Schlossman SF, Tedder TF (1988) Branhamella catarrhalis activates human B lymphocytes following interactions with surface IgD and class I major histocompatibility complex antigens. Cell Immunol 112: 78-88.
  • Forsgren A, Brant M, Mollenkvist A, Muyombwe A, Janson H, Woin N, Riesbeck K (2001) Isolation and characterization of a novel IgD-binding protein from Moraxella catarrhalis. J Immunol 167: 2112-2120.
  • Forsgren A, Brant M, Karamehmedovic M, Riesbeck K (2003) The immunoglobulin D-binding protein MID from Moraxella catarrhalis is also an adhesin. Infect Immun 71: 3302-3309.
  • Forsgren A, Brant M, Riesbeck K (2004) Immunization with the truncated adhesin moraxella catarrhalis immunoglobulin D-binding protein (MID764-913) is protective against M. catarrhalis in a mouse model of pulmonary clearance. J Infect Dis 190: 352-355.
  • Forsgren A, Grubb A (1979) Many bacterial species bind human IgD. J Immunol 122: 1468-1472.
  • Frick IM, Wikstrom M, Forsen S, Drakenberg T, Gomi H, Sjobring U, Bjorck L (1992) Convergent evolution among immunoglobulin G-binding bacterial proteins. Proc Natl Acad Sci USA 89: 8532-8536.
  • Gjorloff-Wingren A, Hadzic R, Forsgren A, Riesbeck K (2002) A novel IgD-binding bacterial protein from Moraxella catarrhalis induces human B lymphocyte activation and isotype switching in the presence of Th2 cytokines. J Immunol 168: 5582-5588.
  • Greiff D, Erjefalt I, Svensson C, Wollmer P, Alkner U, Andersson M, Persson CG (1993) Plasma exudation and solute absorbtion across the airway mucosa. Clin Physiol 13: 219.
  • Griffiths RW, Gleich GJ (1972) Proteolytic degradation of IgD and its relation to molecular conformation. J Biol Chem 247: 4543-4548.
  • Hadzic R, Forsgren A, Cardell LO, Riesbeck K, Wingren AG (2005) The CD19 molecule is crucial for MID-dependent activation of tonsillar B cells from children. Scand J Immunol 61: 165-172.
  • Helminen ME, Maciver I, Paris M, Latimer JL, Lumbley SL, Cope LD, McCracken GH Jr, Hansen EJ (1993) A mutation affecting expression of a major outer membrane protein of Moraxella catarrhalis alters serum resistance and survival in vivo. J Infect Dis 168: 1194-1201.
  • Helminen ME, Maciver I, Latimer JL, Klesney-Tait J, Cope LD, Paris M, McCracken GH Jr, Hansen EJ (1994) A large, antigenically conserved protein on the surface of Moraxella catarrhalis is a target for protective antibodies. J Infect Dis 170: 867-872.
  • Henderson IR, Navarro-Garcia F, Nataro JP (1998) The great escape: structure and function of the autotransporter proteins. Trends Microbiol 6: 370-378.
  • Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala'Aldeen D (2004) Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68: 692-744.
  • Hill DJ, Virji M (2003) A novel cell-binding mechanism of Moraxella catarrhalis ubiquitous surface protein UspA: specific targeting of the N-domain of carcinoembryonic antigen-related cell adhesion molecules by UspA1. Mol Microbiol 48: 117-129.
  • Hoiczyk E, Roggenkamp A, Reichenbecher M, Lupas A, Heesemann J (2000) Structure and sequence analysis of Yersinia YadA and Moraxella UspAs reveal a novel class of adhesins. Embo J 19: 5989-5999.
  • Hol C, Verduin CM, Van Dijke EE, Verhoef J, Fleer A, van Dijk H (1995) Complement resistance is a virulence factor of Branhamella (Moraxella) catarrhalis. FEMS Immunol. Med Microbiol 11: 207-212.
  • Holm MM, Vanlerberg SL, Sledjeski DD, Lafontaine ER (2003) The Hag protein of Moraxella catarrhalis strain O35E is associated with adherence to human lung and middle ear cells. Infect Immun 71: 4977-4984.
  • Holm MM, Vanlerberg SL, Foley IM, Sledjeski DD, Lafontaine ER (2004) The Moraxella catarrhalis porin-like outer membrane protein CD is an adhesin for human lung cells. Infect Immun 72: 1906-1913.
  • Hornef MW, Wick MJ, Rhen M, Normark S (2002) Bacterial strategies for overcoming host innate and adaptive immune responses. Nat Immunol 3: 1033-1040.
  • Horstmann RD, Pangburn MK, Muller-Eberhard HJ (1985) Species specificity of recognition by the alternative pathway of complement. J Immunol 134: 1101-1104.
  • Huston MM, Moore JP, Mettes HJ, Tavana G, Huston DP (1996) Human B cells express IL-5 receptor messenger ribonucleic acid and respond to IL-5 with enhanced IgM production after mitogenic stimulation with Moraxella catarrhalis. J Immunol 156: 1392-1401.
  • Karalus R, Campagnari A (2000) Moraxella catarrhalis: a review of an important human mucosal pathogen. Microbes Infect 2: 547-559.
  • Kastern W, Sjobring U, Bjorck L (1992) Structure of peptostreptococcal protein L and identification of a repeated immunoglobulin light chain-binding domain. J Biol Chem 267: 12820-12825.
  • Kim KM, Reth M (1995) The B cell antigen receptor of class IgD induces a stronger and more prolonged protein tyrosine phosphorylation than that of class IgM. J Exp Med 181: 1005-1014.
  • Klein JO (1994) Lessons from recent studies on the epidemiology of otitis media. Pediatr Infect Dis J 13: 1031-1034.
  • Klingman KL, Murphy TF (1994) Purification and characterization of a high-molecular-weight outer membrane protein of Moraxella (Branhamella) catarrhalis. Infect Immun 62: 1150-1155.
  • Kraiczy P, Wurzner R (2006) Complement escape of human pathogenic bacteria by acquisition of complement regulators. Mol Immunol 43: 31-44.
  • Lafontaine ER, Cope LD, Aebi C, Latimer JL, McCracken GH Jr, Hansen EJ (2000) The UspA1 protein and a second type of UspA2 protein mediate adherence of Moraxella catarrhalis to human epithelial cells in vitro. J Bacteriol 182: 1364-1373.
  • Lafontaine ER, Wagner NJ, Hansen EJ (2001) Expression of the Moraxella catarrhalis UspA1 protein undergoes phase variation and is regulated at the transcriptional level. J Bacteriol 183: 1540-1551.
  • Lee LYL, Hook M, Haviland D, Wetsel RA, Yonter EO, Syribeys P, Vernachio J, Brown EL (2004) Inhibition of complement activation by secreted Staphylococcus aureus protein. J Infect Dis 190: 571-579.
  • Mathers K, Leinonen M, Goldblatt D (1999) Antibody response to outer membrane proteins of Moraxella catarrhalis in children with otitis media. Pediatr Infect Dis J 18: 982-988.
  • Marc MM, Korosec P, Kosnik M, Kern I, Flezar M, Suskovic S, Sorli J (2004) Complement factors C3a, C4a, and C5a in chronic obstructive pulmonary disease and asthma. Am J Respir Cell Mol Biol 31: 216-219.
  • McMichael JC (2000) Vaccines for Moraxella catarrhalis. Vaccine 19: (Suppl 1) S101-S107.
  • McMichael JC, Fiske MJ, Fredenburg RA, Chakravarti DN, Vandermeid KR, Barniak V, Caplan J, Bortell E, Baker S, Arumugham R, Chen D (1998) Isolation and characterization of two proteins from Moraxella catarrhalis that bear a common epitope. Infect Immun 66: 4374-4381.
  • Meier PS, Troller R, Grivea IN, Syrogiannopoulos GA, Aebi C (2002) The outer membrane proteins UspA1 and UspA2 of Moraxella catarrhalis are highly conserved in nasopharyngeal isolates from young children. Vaccine 20: 1754-1760.
  • Meri S, Lehtinen T, Palva T (1984) Complement in chronic secretory otitis media. C3 breakdown and C3 splitting activity. Arch Otolaryngol 110: 774-778.
  • Murphy TF, Brauer AL, Yuskiw N, Hiltke TJ (2000) Antigenic structure of outer membrane protein E of Moraxella catarrhalis and construction and characterization of mutants. Infect Immun 68: 6250-6256.
  • Murphy TF (1996) Branhamella catarrhalis: epidemiology, surface antigenic structure, and immune response. Microbiol Rev 60: 267-279.
  • Murphy S, Fitzgerald M, Mulcahy R, Keane C, Coakley D, Scott T (1997) Studies on haemagglutination and serum resistance status of strains of Moraxella catarrhalis isolated from the elderly. Gerontology 43: 277-282.
  • Mollenkvist A, Nordstrom T, Hallden C, Christensen JJ, Forsgren A, Riesbeck K (2003) The Moraxella catarrhalis immunoglobulin D-binding protein MID has conserved sequences and is regulated by a mechanism corresponding to phase variation. J Bacteriol 185: 2285-2295.
  • Nordstrom T, Forsgren A, Riesbeck K (2002) The immunoglobulin D-binding part of the outer membrane protein MID from Moraxella catarrhalis comprises 238 amino acids and a tetrameric structure. J Biol Chem 277: 34692-34699.
  • Nordstrom T, Jendholm J, Samuelsson M, Forsgren A, Riesbeck K (2006) The IgD-binding domain of the Moraxella IgD-binding protein MID (MID962-1200) activates human B cells in the presence of T cell cytokines. J Leukoc Biol 79: 319-329.
  • Onofrio JM, Shulkin AN, Heidbrink PJ, Toews GB, Pierce AK (1981) Pulmonary clearance and phagocytic cell response to normal pharyngeal flora. Am Rev Respir Dis 123: 222-225.
  • Pearson MM, Lafontaine ER, Wagner NJ, St Geme JW 3rd, Hansen EJ (2002) A hag mutant of Moraxella catarrhalis strain O35E is deficient in hemagglutination, autoagglutination, and immunoglobulin D-binding activities. Infect Immun 70: 4523-4533.
  • Persson CG, Erjefalt I, Alkner UC, Baumgarten L, Greiff B, Gustafsson A, Luts U, Pipkorn F, Sundler C, Svensson et al. (1991) Plasma exudation as a first line respiratory mucosal defence. Clin Exp Allergy 21: 17.
  • Ram S, Cullinane M, Blom AM, Gulati S, McQuillen DP, Monks BG, O'Connell C, Boden R, Elkins C, Pangburn MK, Dahlback B, Rice PA (2001) Binding of C4b-binding protein to porin: a molecular mechanism of serum resistance of Neisseria gonorrhoeae. J Exp Med 193: 281-296.
  • Rowe DS, Fahey JL (1965) A new class of human immunoglobulins. Ii. Normal Serum IgD. J Exp Med 121: 185-199.
  • Sakurada J, Li Z, Seki K, Murai M, Usui A, Morihigashi M, Jitsukawa H, Seong HK, Mutou M, Masuda S (1994) Biochemical and genetic heterogeneity of staphylococcal protein A. FEMS Microbiol Lett 119: 59-63.
  • Sasaki K, Harkness RE, Klein MH (1998) Nucleic acids encoding high molecular weight major outer membrane protein of Moraxella. U.S. Patent 5,808,024.
  • Schulz GE (2000) β-Barrel membrane proteins. Curr Opin Struct Biol 10: 443-447.
  • Schulz GE (2002) The structure of bacterial outer membrane proteins. Biochim Biophys Acta 1565: 308-317.
  • Schulz GE (2003) Transmembrane β-barrel proteins. Adv Protein Chem 63: 47-70.
  • Sethi S, Murphy TF (2001) Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev 14: 336-363.
  • Surana NK, Cutter D, Barenkamp SJ, St Geme JW (2004) The Haemophilus influenzae Hia autotransporter contains an unusually short trimeric translocator domain. J Biol Chem 279: 14679-14685.
  • Takada R, Harabuchi Y, Himi T, Kataura A (1998) Antibodies specific to outer membrane antigens of Moraxella catarrhalis in sera and middle ear effusions from children with otitis media with effusion. Int J Pediatr Otorhinolaryngol 46: 185-195.
  • Tan TT, Nordstrom T, Forsgren A, Riesbeck K (2005) The respiratory pathogen Moraxella catarrhalis adheres to epithelial cells by interacting with fibronectin through ubiquitous surface proteins A1 and A2. J Infect Dis 192: 1029-1038.
  • Timpe JM, Holm MM, Vanlerberg SL, Basrur V, Lafontaine ER (2003) Identification of a Moraxella catarrhalis outer membrane protein exhibiting both adhesin and lipolytic activities. Infect Immun 71: 4341-4350.
  • Uhlen M, Guss B, Nilsson B, Gatenbeck S, Philipson L, Lindberg M (1984) Complete sequence of the staphylococcal gene encoding protein A. A gene evolved through multiple duplications. J Biol Chem 259: 1695-1702.
  • Van Boxel JA, Paul WE, Terry WD, Green I (1972) Communications. IgD-bearing human lymphocytes. J Immunol 109: 648-651.
  • Veiga E, Sugawara E, Nikaido H, de Lorenzo V, Fernandez LA (2002) Export of autotransported proteins proceeds through an oligomeric ring shaped by C-terminal domains. EMBO J 21: 2122-2131.
  • Verduin CM, Hol C, Fleer A, van Djik H, van Belkum HA (2002) Moraxella catarrhalis: from emerging to established pathogen. Clin Microbiol Rev 15: 125-144.
  • Verduin CM, Jansze M, Hol C, Mollnes TE, Verhoef J, van Dijk H (1994) Differences in complement activation between complement-resistant and complement-sensitive Moraxella (Branhamella) catarrhalis strains occur at the level of membrane attack complex formation. Infect Immun 62: 589-595.
  • Wollmann P, Zeth K, Lupas AN, Linke D (2006) Purification of the YadA membrane anchor for secondary structure analysis and crystallization. Int J Biol Macromol, in press.
  • Wurzner R (1999) Evasion of pathogens by avoiding recognition or eradication by complement, in part via molecular mimicry. Mol Immunol 36: 249-260.
  • Zaleski, A, Scheffler NK, Densen P, Lee FK, Campagnari AA, Gibson BW, Apicella MA (2000) Lipooligosaccharide P(k) (Galα1-4Galβ1-4Glc) epitope of Moraxella catarrhalis is a factor in resistance to bactericidal activity mediated by normal human serum. Infect Immun 68: 5261-5268.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv53p445kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.