PL EN


Preferences help
enabled [disable] Abstract
Number of results
2005 | 52 | 4 | 797-802
Article title

The role of benzoate secreted by Desulfotomaculum acetoxidans DSM 771 in sulfate uptake

Content
Title variants
Languages of publication
EN
Abstracts
EN
This work was designed to find the cause of the delay in hydrogen sulfide dissimilation in Desulfotomaculum acetoxidans DSM 771, which is dependent on the sulfate uptake. This bacterium grown without addition of any aromatic compound was shown by spectrum analysis with the methylene method to contain hydroxy-benzoate derivatives. The presence of these compounds was confirmed by HPLC in fractions obtained from cell walls after 15 days of culture. The test with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt seemed to indicate the presence of peroxidase, which probably oxidized benzoate to its hydroxy derivatives. The test with 5-sulfo-salicylic acid proved the ability of the investigated strain to utilize arylsulfates and to reduce sulfate group to hydrogen sulfide. On the basis of the above data, we propose the following sequence of reactions: 1, benzoate secretion; 2, benzoate hydroxylation; 3, sulfonation of hydroxy-benzoate derivatives.
Publisher

Year
Volume
52
Issue
4
Pages
797-802
Physical description
Dates
published
2005
received
2004-01-30
revised
2005-03-24
accepted
2005-10-13
(unknown)
2005-10-25
Contributors
  • Pedagogical University of Cracow, Department of Microbiology, Kraków, Poland
author
  • Pedagogical University of Cracow, Department of Microbiology, Kraków, Poland
References
  • Barth L (1871) Ueber die Umwandlung der Oxybenzoësäure in Protocatechusäure und die Constitution der letzteren. Justus Liebigs Ann Chem 159: 230-240.
  • Cypionka H (1987) Uptake of sulfate, sulfite and thiosulfate by proton-anion symport in Desulfovibrio desulfuricans. Arch Microbiol 148: 144-149.
  • Cypionka H (1989) Characterization of sulfate transport in Desulfovibrio desulfuricans. Arch Microbiol 152: 237-243.
  • Fago JK., Popowsky M (1949) Spectrophotometric determination of hydrogen sulfide. Methylene blue method. Anal Chem 21: 732-734.
  • Fuseler K, Krekeler D, Sydow U, Cypionka H (1996) A common pathway of sulfide oxidation by sulfate-reducing bacteria. FEMS Microbiol Lett 144: 129-134.
  • Gorny N, Schink B (1994) Complete anaerobic oxidation of hydroquinone by Desulfococcus sp. strain Hy5: indications of hydroquinone carboxylation to gentisate. Arch Microbiol 162: 131-135.
  • Kertesz MA (2001) Bacterial transporters for sulfate and organosulfur compounds. Res Microbiol 152: 279-290.
  • Kuever J, Kulmer J, Jannsen S, Fischer U, Blotevogel KH (1993) Isolation and characterization of a new spore-forming sulfate-reducing bacterium growing by complete oxidation of catechol. Arch Microbiol 159: 282-288.
  • LeGall J, Fauque G (1988) Dissimilatory reduction of sulfur compounds. In Biology of Anaerobic Microorganisms, Zehnder AJB, ed, pp 469-586, AJ Wiley & Sons Inc, New York, Singapore.
  • Moura I, LeGall J, Lino AR Jr, Peck HD, Fauque G, Xavier AV, DerVartanian DV, Moura JJG, Huynh BH (1988) Characterization of two dissimilatory sulfite reductases (desulforubidin and desulfoviridin) from the sulfate-reducing bacteria. Mössbauer and EPR studies. J Am Chem Soc 110: 1075-1082.
  • Pado R, Pawłowska-Ćwięk L (2004) Monitoring of changes occurring during a long-term incubation of Desulfotomaculum acetoxidans DSM 771. Acta Biol Cracoviensia Ser Bot 46: 101-107.
  • Pado R, Pawłowska-Ćwięk L, Szwagrzyk J (1994) Heavy metals detoxification in soil performed by sulfate-reducing bacteria. Ekol Pol (Pol J Ecol) 42: 103-123.
  • Postgate JR (1984) Incubation and growth. In: The Sulfate Reducing Bacteria. 2nd edn. pp 24-40. Cambridge University Press, London.
  • Rabus R, Widdel F (1995) Conversion studies with substrate analogues of toluene in sulfate-reducing bacterium, strain Tol2. Arch Microbiol 164: 448-451.
  • Raskin L, Rittmann BE, Stahl DA (1996) Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms. Appl Environ Microbiol 62: 3847-3857.
  • Schink B, Brune A, Schnell S (1992) Anaerobic degradation of aromatic compounds. In Microbial Degradation of Natural Products, Winkelmann G, ed, pp 220-239. VCH, Weinheim, Cambridge.
  • Schnell S, Bak F, Pfennig N (1989) Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium anilini. Arch Microbiol 152: 556-563.
  • Silver S, Walderhaung M (1992) Ion transport. In Encyclopedia of Microbiology, Vol. 2: 549-560. Academic Pess INC, San Diego.
  • Szutowicz A, Kobes RD, Orsulak PJ (1984) Colorimetric assay for monoamine oxidase in tissues using peroxidase and 2,2'-azinodi(3-ethylbenzothiazoline-6-sulfonic acid) as chromogen. Anal Biochem 138: 86-94.
  • Valdés J, Veloso F, Jedlicki E, Holmes D (2003) Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis. BMC Genomics 4: 51-64.
  • Van Ommen Kloake F, Bryant RD, Laishley EJ (1995) Localization of cytochromes in the outer membrane of Desulfovibrio vulgaris (Hildenborough) and their role in anaerobic biocorrosion. Anaerobe 1: 351-358.
  • Vermeij P, Wietek C, Kahnert A, Wüest T, Kertesz MA (1999) Genetic organization of sulfur-controlled aryl desulfonation in Pseudomonas putida S-313. Mol Microbiol 32: 913-926.
  • Widdel F, Pfennig N (1984) Dissimilatory sulfate- or sulfur-reducing bacteria. In Bergey's Manual of Systematic Bacteriology, Krieg NR, Holt JG, eds, vol 1, pp 663-679. Williams & Wilkins, Baltimore, London, Tokio.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv52p797kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.