PL EN


Preferences help
enabled [disable] Abstract
Number of results
2005 | 52 | 3 | 633-638
Article title

New generation of peptide antibiotics

Content
Title variants
Languages of publication
EN
Abstracts
EN
The increasing antibiotic resistance of pathogenic bacteria calls for the development of alternative antimicrobial strategies. Possible approaches include the development of novel, broad-spectrum antibiotics as well as specific targeting of individual bacterial virulence factors. It is impossible to decide currently which strategy will prove more successful in the future since they both promise different advantages, but also introduce diverse problems. Considering both approaches, our laboratory's research focuses on the evaluation of hemocidins, broad-spectrum antibacterial peptides derived from hemoglobin and myoglobin, and staphostatins, specific inhibitors of staphopains - Staphylococcus aureus secreted proteases that are virulence factors regarded as possible targets for therapy. The article summarizes recent advances in both fields of study and presents perspectives for further development and possible applications.
Publisher

Year
Volume
52
Issue
3
Pages
633-638
Physical description
Dates
published
2005
received
2005-03-15
revised
2005-06-16
accepted
2005-07-14
Contributors
author
  • Faculty of Biotechnology, Jagiellonian University, Kraków, Poland
author
  • Faculty of Biotechnology, Jagiellonian University, Kraków, Poland
  • Faculty of Biotechnology, Jagiellonian University, Kraków, Poland
  • Faculty of Biotechnology, Jagiellonian University, Kraków, Poland
  • Faculty of Biotechnology, Jagiellonian University, Kraków, Poland
  • Faculty of Biotechnology, Jagiellonian University, Kraków, Poland
  • Faculty of Biotechnology, Jagiellonian University, Kraków, Poland
author
  • Faculty of Biotechnology, Jagiellonian University, Kraków, Poland
References
  • Abdelnour A, Arvidson S, Bremell T, Rydén C, Tarkowski A (1993) The accessory gene regulator (agr) controls Staphylococcus aureus virulence in a murine arthritis model. Infect Immun 61: 3879-3885.
  • Cheung AL, Yeaman MR, Sullam PM, Witt MD, Bayer AS (1994) Role of the sar locus of Staphylococcus aureus in induction of endocarditis in rabbits. Infect Immun 62: 1719-1725.
  • Coulter SN, Schwan WR, Ng EY, Langhorne MH, Ritchie HD, Westbrock-Wadman S, Hufnagle WO, Folger KR, Bayer AS, Stover CK (1998) Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol Microbiol 30: 393-404.
  • Dubin G (2002) Extracellular proteases of Staphylococcus spp. Biol Chem 383: 1075-1086.
  • Dubin G, Krajewski M, Popowicz G, Stec-Niemczyk J, Bochtler M, Potempa J, Dubin A, Holak TA (2003) A novel class of cysteine protease inhibitors: solution structure of staphostatin A from Staphylococcus aureus. Biochemistry 42: 13449-13456.
  • Filipek R, Rzychon M, Oleksy A, Gruca M, Dubin A, Potempa J, Bochtler M (2003) The staphostatin-staphopain complex: a forward binding inhibitor in complex with its target cysteine protease. J Biol Chem 278: 40959-40966.
  • Fogaca AC, da Silva PI Jr, Miranda MT, Bianchi AG, Miranda A, Ribolla PE, Daffre S (1999) Antimicrobial activity of a bovine hemoglobin fragment in the tick Boophilus microplus. J Biol Chem 274: 25330-25334.
  • Hobson D, Hirsh JG (1958) The antibacterial activity of hemoglobin. J Exp Med 107: 167-183.
  • Ivanov VT, Karelin AA, Philippova MM, Nazimov IV, Pletnev VZ (1997) Hemoglobin as a source of endogenous bioactive peptides: the concept of tissue-specific peptide pool. Biopolymers 43: 171-188.
  • Karelin AA, Philippova MM, Ivanov VT (1995) Proteolytic degradation of hemoglobin in erythrocytes leads to biologically active peptides. Peptides 16: 693-697.
  • Karelin AA, Blishchenko EY, Ivanov VT (1998) A novel system of peptidergic regulation. FEBS Lett 428: 7-12.
  • Liepke C, Baxmann S, Heine C, Breithaupt N, Standker L, Forssmann WG (2003) Human hemoglobin-derived peptides exhibit antimicrobial activity: a class of host defense peptides. J Chromatogr B Analyt Technol Biomed Life Sci 791: 345-356.
  • Mak P, Wójcik K, Silberring J, Dubin A (2000) Antimicro­bal peptides from heme-containing proteins: Hemocidins. Antonie van Leeuwenhoek 77: 197-200.
  • Mak P, Szewczyk A, Mickowska B, Kicińska A, Dubin A (2001) Effect of antimicrobial apomyoglobin 56-131 peptide on liposomes and planar lipid bilayer membrane. Int J Antimicrob Agents 17: 137-142.
  • Mak P, Wójcik K, Wicherek L, Suder P, Dubin A (2004) Antibacterial hemoglobin peptides in human menstrual blood. Peptides 25: 1839-1847.
  • McGahee W, Lowy FD (2000) Staphylococcal infections in the intensive care unit. Semin Respir Infect 15: 308-313.
  • Nakajima Y, Ogihara K, Taylor D, Yamakawa M (2003) Antibacterial hemoglobin fragments from the midgut of the soft tick, Ornithodoros moubata (Acari: Argasidae). J Med Entomol 40: 78-81.
  • Novick RP (2000) Pathogenicity Factors and their Regulation in Gram-Positive Pathogens. Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Rood JI, eds, pp 392-407. American Society for Microbiology, Washington, DC.
  • Oren Z, Shai Y (1998) Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers 47: 451-463.
  • Pabich WL, Fihn SD, Stamm WE, Scholes D, Boyko EJ, Gupta K (2003) Prevalence and determinants of vaginal flora alterations in postmenopausal women. J Infect Dis 188: 1054-1058.
  • Parish CA, Jiang H, Tokiwa Y, Berova N, Nakanishi K, McCabe D, Zuckerman W, Xia MM, Gabay JE (2001) Broad-spectrum antimicrobial activity of hemoglobin. Bioorg Med Chem 9: 377-382.
  • Prévost G, Rifai S, Chaix ML, Piémont Y (1991) Functional evidence that the Ser-195 residue of staphylococcal exfoliative toxin A is essential for biological activity. Infect Immun 59: 3337-3339.
  • Reed SB, Wesson CA, Liou LE, Trumble WR, Schlievert PM, Bohach GA, Bayles KW (2001) Molecular characterization of a novel Staphylococcus aureus serine protease operon. Infect Immun 69: 1521-1527.
  • Redpath MB, Foster TJ, Bailey CJ (1991) The role of the serine protease active site in the mode of action of epidermolytic toxin of Staphylococcus aureus. FEMS Microbiol Lett 65: 151-156.
  • Rice K, Peralta R, Bast D, Azavedo J, McGavin MJ (2001) Description of staphylococcus serine protease (ssp) operon in Staphylococcus aureus and nonpolar inactivation of sspA-encoded serine protease. Infect Immun 69: 159-169.
  • Rzychon M, Filipek R, Sabat A, Kosowska K, Dubin A, Potempa J, Bochtler M (2003a) Staphostatins resemble lipocalins, not cystatins in fold. Protein Sci 12: 2252-2256.
  • Rzychon M, Sabat A, Kosowska K, Potempa J, Dubin A (2003b) Staphostatins: an expanding new group of protease inhibitors with a unique specificity for the regulation of staphopains, Staphylococcus spp. cysteine proteases. Mol Microbiol 49: 1051-1066.
  • Salamonsen LA, Lathbury LJ (2000) Endometrial leukocytes and menstruation Hum Reprod Update 6: 16-27.
  • Salamonsen LA, Zhang J, Brasted M (2002) Leukocyte networks and human endometrial remodelling. J Reprod Immunol 57: 95-108.
  • Sifri CD, Begun J, Ausubel FM, Claderwood SB (2003) Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun 71: 2208-2217.
  • Shaw L, Golonka E, Potempa J, Foster SJ (2004) The role and regulation of the extracellular proteases of Staphylococcus aureus. Microbiology 150: 217-228.
  • Wladyka B, Puzia K, Dubin A (2005) Efficient co-expression of a recombinant staphopain A and its inhibitor staphostatin A in Escherichia coli. Biochem J 385: 181-187.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv52i3p633kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.