Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2005 | 52 | 2 | 551-555

Article title

Does the peroxidase-like activity of sodium dodecyl sulphate-modified cytochrome c increase after peroxynitrite or radiation treatment?.

Content

Title variants

Languages of publication

EN

Abstracts

EN
The peroxidase-like activity of cytochrome c is considerably increased by unfolding of the protein. The enhancement of the activity is due to the higher reaction rate of unfolded cytochrome c with hydrogen peroxide, which is the rate-determining step in the peroxidase cycle of cytochrome c (Gębicka, L., 2001, Res Chem Intermed 27, 717-23). In this study we checked whether combined action of two unfolding factors, SDS and peroxynitrite or radiation (hydroxyl radicals), increases the peroxidase-like activity of cytochrome c more than any single treatment alone. Peroxynitrite reacts with SDS-modified cytochrome c in the same way as with native cytochrome c, via intermediate radical products, •OH/•NO2, arising from peroxynitrite homolysis. We found that SDS-modified cytochrome c is much more sensitive to oxidative damage than the native protein. Partial unfolding of cytochrome c by SDS causes the peroxide substrate to have a better access to the heme center. On the other hand, the amino acids located in the vicinity of the active site and/or heme group become accessible for oxidizing radicals. The overall effect observed is that the peroxidase-like activity of SDS-modified cytochrome c decreases with an increase of the concentration of the oxidizing species (peroxynitrite or radiolytically generated hydroxyl radicals). The damage of SDS-modified cytochrome c caused by irradiation is much more significant than that observed after peroxynitrite treatment.

Year

Volume

52

Issue

2

Pages

551-555

Physical description

Dates

published
2005
received
2004-12-10
revised
2005-01-12
accepted
2005-02-03
(unknown)
2005-05-15

Contributors

  • Institute of Applied Radiation Chemistry, Technical University of Łódź, Łódź, Poland
author
  • Institute of Applied Radiation Chemistry, Technical University of Łódź, Łódź, Poland

References

  • Augusto O, Bonini MG, Amanso AM, Linares E, Santos CCX, de Menezes SL (2002) Free Rad Biol Med 32: 841-859.
  • Bansal KM, Patterson LK, Fendler EJ, Fendler JH (1971) Int J Radiat Phys Chem 3: 321-331.
  • Barr DP, Gunther MR, Deterding LJ, Tomer KB, Mason RP (1996) J Biol Chem 271: 15498-15503.
  • Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) J Phys Chem Ref Data 17: 513-886.
  • Cassina AM, Hodara R, Souza JM, Thomson L, Castro L, Ischropoulos H, Freeman BA, Radi R (2000) J Biol Chem 275: 21409-21415.
  • Castro L, Eiserich JP, Sweeney S, Radi R, Freeman BA (2004) Arch Biochem Biophys 421: 99-107.
  • Chen Y-R, Deterding LJ, Sturgeon BE, Tomer KB, Mason RP (2002) J Biol Chem 277: 29781­-29791.
  • Childs RE, Bardsley WG (1975) Biochem J 145: 93-103.
  • Diederix REM, Ubbink M, Canters GW (2002) Biochemistry 41: 13067-13077.
  • Diederix REM, Busson S, Ubbink M, Canters GW (2004) J Mol Catal B 27: 75-82.
  • Evers EL, Jayson GG, Swallow AJ (1978) J Chem Soc Faraday Trans I 74: 418-426.
  • Florence TM (1985) J Inorg Biochem 23: 131-141.
  • Floris R, Piersma R, Yang G, Jones P, Wever R (1993) Eur J Biochem 215: 767-775.
  • Gębicka L (2001) Res Chem Intermed 27: 717-723.
  • Gębicka L, Didik J (2003) Acta Biochim Polon 50: 815-823.
  • Gębicka L, Gębicki JL (1998) J Protein Chem 18: 165-171.
  • Gębicka L, Gębicki JL (2000) IUBMB Life 49: 11-15.
  • Goldstein S, Czapski G (1995) Inorg Chem 34: 4041-4048.
  • Goto Y, Hagihara Y, Hamada D, Hoshino M, Nishi I (1993) Biochemistry 32: 11878-11885.
  • Hamachi J, Fujita A, Kunitake T (1994) J Am Chem Soc 116: 8811-8812.
  • Herold S, Shivashankar K (2003) Biochemistry 42: 14036-14046.
  • Hugdes MN, Nicklin HG (1968) J Chem Soc 450-452.
  • Kirsch M, Korth H-G, Wensing A, Sustman R, de Groot H (2003) Arch Biochem Biophys 418: 133­-150.
  • Kluck RM, Bossy-Welzel E, Green DR, Newmeyer DD (1997) Science 275: 1132-1136.
  • Lawrence A, Jones CM, Wardman P, Burkitt MJ (2003) J Biol Chem 278: 29410-29419.
  • Li P, Dijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cell 91: 479-489.
  • Neta P, Huie RE, Ross AB (1988) J Phys Chem Ref Data 17: 1027-1284.
  • Oellerich S, Wackerbarth H, Hildebrandt P (2002) J Phys Chem B 106: 6566-6580.
  • Oellerich S, Wackerbarth H, Hildebrandt P (2003) Eur Biophys J 32: 599-613.
  • Otzen DE, Oliveberg M (2002) J Mol Biol 315: 1231-1240.
  • Pryor WA, Cueto R, Jin X, Koppenol WH, Ngu-Schwemlein M, Squadrito GL, Uppu PL, Uppu RM (1995) Free Radic Biol Med 18: 75-83.
  • Radi R, Thomson L, Rubbo H, Prodanov E (1991) Arch Biochem Biophys 288: 112-117.
  • Reynolds JA, Tanford C (1970) Proc Natl Acad Sci USA 66: 1002-1007.
  • Skulachev VP (1998) FEBS Lett 423: 275-280.
  • Villegas JA, Mauk AG, Vazquez-Duhalt R (2000) Chem Biol 7: 237-244.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-abpv52i2p551kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.