Preferences help
enabled [disable] Abstract
Number of results
2005 | 52 | 2 | 321-328
Article title

Prospects for p53-based cancer therapy.

Title variants
Languages of publication
The p53 tumor suppressor plays the role of a cellular hub which gathers stress signals such as damage to DNA or hypoxia and translates them into a complex response. p53 exerts its action mainly as a potent transcription factor. The two major outcomes of p53 activity are highlighted: cell cycle arrest and apoptosis. During malignant transformation p53 or p53-pathway related molecules are disabled extremely often. Mutations in p53 gene are present in every second human tumor. A mutant form of p53 may not only negate the wild type p53 function but may play additional role in tumor progression. Therefore p53 represents a relatively unique and specific target for anticancer drug design. Current approaches include several different molecules able to restore p53 wild-type conformation and activity. Such small molecule drugs hold great promise in treating human tumors with dysfunction of p53 pathway in the near future.
Physical description
  • Department of Immunology, Center for Biostructure, Medical University of Warsaw, Warszawa, Poland
  • Department of Immunology, Center for Biostructure, Medical University of Warsaw, Warszawa, Poland
  • Amarante-Mendes GP, McGahon AJ, Nishioka WK, Afar DE, Witte ON, Green DR (1998) Bcl-2-independent Bcr-Abl-mediated resistance to apoptosis: protection is correlated with up regulation of Bcl-xL. Oncogene 16: 1383-1390.
  • Barak Y, Juven T, Haffner R, Oren M (1993) mdm2 expression is induced by wild type p53 activity. EMBO J 12: 461-468.
  • Bargonetti J, Manfredi JJ (2002) Multiple roles of the tumor suppressor p53. Curr Opin Oncol 14: 86-91.
  • Blagosklonny MV (2005) How cancer could be cured by 2015. Cell Cycle 4: 269-278.
  • Blandino G, Dobbelstein M (2004) p73 and p63: why do we still need them? Cell Cycle 3: 886-894.
  • Brachmann RK (2004) p53 mutants: the achilles’ heel of human cancers? Cell Cycle 3: 1030-1034.
  • Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, Bergman J, Wiman KG, Selivanova G (2002) Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8: 282-288.
  • Bykov VJ, Selivanova G, Wiman KG (2003) Small molecules that reactivate mutant p53. Eur J Cancer 39: 1828-1834.
  • Corcoran CA, Huang Y, Sheikh MS (2004) The p53 paddy wagon: COP1, Pirh2 and MDM2 are found resisting apoptosis and growth arrest. Cancer Biol Ther 3: 721-725.
  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215-221.
  • Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P, O’Rourke K, Koeppen H, Dixit VM (2004) The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429: 86-92.
  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817-825.
  • Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F, Jacks T (2002) p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416: 560-564.
  • Foster BA, Coffey HA, Morin MJ, Rastinejad F (1999) Pharmacological rescue of mutant p53 conformation and function. Science 286: 2507-2510.
  • Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22: 9030-9040.
  • Friedler A, Hansson LO, Veprintsev DB, Freund SM, Rippin TM, Nikolova PV, Proctor MR, Rudiger S, Fersht AR (2002) A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc Natl Acad Sci USA 99: 937-942.
  • Galanis E, Okuno SH, Nascimento AG, Lewis BD, Lee RA, Oliveira AM, Sloan JA, Atherton P, Edmonson JH, Erlichman C, Randlev B, Wang Q, Freeman S, Rubin J (2005) Phase I-II trial of ONYX-015 in combination with MAP chemotherapy in patients with advanced sarcomas Gene Ther 12: 437-445.
  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57-70.
  • Haupt S, Haupt Y (2004) Improving cancer therapy through p53 management. Cell Cycle 3: 912-916.
  • Haupt S, Berger M, Goldberg Z, Haupt Y (2003) Apoptosis - the p53 network. J Cell Sci 116: 4077-4085.
  • Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH (1997) ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 3: 639-645.
  • Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A, Hawkins L, Kirn D (2000) An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 6: 1134-1139.
  • Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S, Kinzler KW, Vogelstein B (1997) 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1: 3-11.
  • Hofseth LJ, Hussain SP, Harris CC (2004) p53: 25 years after its discovery. Trends Pharmacol Sci 25: 177-181.
  • Hollander MC, Alamo I, Jackman J, Wang MG, McBride OW, Fornace AJ Jr (1993) Analysis of the mammalian gadd45 gene and its response to DNA damage. J Biol Chem 268: 24385-24393.
  • Issaeva N, Friedler A, Bozko P, Wiman KG, Fersht AR, Selivanova G (2003) Rescue of mutants of the tumor suppressor p53 in cancer cells by a designed peptide. Proc Natl Acad Sci USA 100: 13303-13307.
  • Jones SN, Roe AE, Donehower LA, Bradley A (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378: 206-208.
  • Klein C, Vassilev LT (2004) Targeting the p53-MDM2 interaction to treat cancer. Br J Cancer 91: 1415-1419.
  • Koshland DE Jr (1993) Molecule of the year. Science 262: 1953.
  • Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387: 299-303.
  • Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358: 15-16.
  • Lang FF, Bruner JM, Fuller GN, Aldape K, Prados MD, Chang S, Berger MS, McDermott MW, Kunwar SM, Junck LR, Chandler W, Zwiebel JA, Kaplan RS. Yung WK (2003) Phase I trial of adenovirus-mediated p53 gene therapy for recurrent glioma: biological and clinical results. J Clin Oncol 21: 2508-2518.
  • Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM, Valentin-Vega YA, Terzian T, Caldwell LC, Strong LC, El-Naggar AK, Lozano G (2004) Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119: 861-872.
  • Levine AJ, Finlay CA, Hinds, PW (2004) P53 is a tumor suppressor gene. Cell 116: S67-69.
  • Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432: 307-315.
  • Malkin D (1993) p53 and the Li-Fraumeni syndrome. Cancer Genet Cytogenet 66: 83-92.
  • Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250: 1233-1238.
  • Meek DW (2004) The p53 response to DNA damage. DNA Repair (Amst) 3: 1049-1056.
  • Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69: 1237-1245.
  • Momand J, Wu HH, Dasgupta G (2000) MDM2--master regulator of the p53 tumor suppressor protein. Gene 242: 15-29.
  • Neubauer A, He M, Schmidt CA, Huhn D, Liu ET (1993) Genetic alterations in the p53 gene in the blast crisis of chronic myelogenous leukemia: analysis by polymerase chain reaction based techniques. Leukemia 7: 593-600.
  • Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P (1989) Mutations in the p53 gene occur in diverse human tumour types. Nature 342: 705-708.
  • Okamoto K, Beach D (1994) Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J 13: 4816-4822.
  • Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT, Crowley D, Jacks T (2004) Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119: 847-860.
  • Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P (2002) The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19: 607-614.
  • Olivier M, Goldgar DE, Sodha N, Ohgaki H, Kleihues P, Hainaut P, Eeles RA (2003) Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res 63: 6643-6650.
  • Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55: 74-108.
  • Rogulski KR, Freytag SO, Zhang K, Gilbert JD, Paielli DL, Kim JH, Heise CC, Kirn DH (2000) In vivo antitumor activity of ONYX-015 is influenced by p53 status and is augmented by radiotherapy. Cancer Res 60: 1193-1196.
  • Roth J, Lenz-Bauer C, Contente A, Lohr K, Koch P, Bernard S, Dobbelstein M (2003) Reactivation of mutant p53 by a one-hybrid adaptor protein. Cancer Res 63: 3904-3908.
  • Rouault JP, Falette N, Guehenneux F, Guillot C, Rimokh R, Wang Q, Berthet C, Moyret-Lalle C, Savatier P, Pain B, Shaw P, Berger R, Samarut J, Magaud JP, Ozturk M, Samarut C, Puisieux A (1996) Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat Genet 14: 482-486.
  • Rovira A, Urbano-Ispizua A, Cervantes F, Rozman M, Vives-Corrons JL, Montserrat E, Rozman C (1995) P53 tumor suppressor gene in chronic myelogenous leukemia: a sequential study. Ann Hematol 70: 129-133.
  • Salomoni P, Condorelli F, Sweeney SM, Calabretta B (2000) Versatility of BCR/ABL-expressing leukemic cells in circumventing proapoptotic BAD effects. Blood 96: 676-684.
  • Sawyers C (2004) Targeted cancer therapy. Nature 432: 294-297.
  • Scott SL, Earle JD, Gumerlock PH (2003) Functional p53 increases prostate cancer cell survival after exposure to fractionated doses of ionizing radiation. Cancer Res 63: 7190-7196.
  • Seemann S, Maurici D, Olivier M, de Fromentel CC, Hainaut P (2004) The tumor suppressor gene TP53: implications for cancer management and therapy. Crit Rev Clin Lab Sci 41: 551-583.
  • Sigal A, Rotter V (2000) Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res 60: 6788-6793.
  • Snyder EL, Meade BR, Saenz CC, Dowdy SF (2004) Treatment of terminal peritoneal carcinomatosis by a transducible p53-activating peptide. PLoS Biol 2: E36.
  • Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH (1990) Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 348: 747-749.
  • Stoklosa T, Slupianek A, Datta M, Nieborowska-Skorska M, Nowicki MO, Koptyra M, Skorski T (2004) BCR/ABL recruits p53 tumor suppressor protein to induce drug resistance. Cell Cycle 3: 1463-1472.
  • Swisher SG, Roth JA, Komaki R, Gu J, Lee JJ, Hicks M, Ro JY, Hong WK, Merritt JA, Ahrar K, Atkinson NE, Correa AM, Dolormente M, Dreiling L, El-Naggar AK, Fossella F, Francisco R, Glisson B, Grammer S, Herbst R, Huaringa A, Kemp B, Khuri FR, Kurie JM, Liao Z, McDonnell TJ, Morice R, Morello F, Munden R, Papadimitrakopoulou V, Pisters KM, Putnam JB Jr, Sarabia AJ, Shelton T, Stevens C, Shin DM, Smythe WR, Vaporciyan AA, Walsh GL, Yin M (2003) Induction of p53-regulated genes and tumor regression in lung cancer patients after intratumoral delivery of adenoviral p53 (INGN 201) and radiation therapy. Clin Cancer Res. 9: 93-101.
  • Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M, Levitt M, Pass H, Gazdar AF, Minna JD (1989) p53: a frequent target for genetic abnormalities in lung cancer. Science 246: 491-494.
  • Takimoto R, Wang W, Dicker DT, Rastinejad F, Lyssikatos J, el-Deiry WS (2002) The mutant p53-conformation modifying drug, CP-31398, can induce apoptosis of human cancer cells and can stabilize wild-type p53 protein. Cancer Biol Ther 1: 47-55.
  • Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S, Matsui K, Takei Y, Nakamura Y (2000) A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404: 42-49.
  • Taylor WR, Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20: 1803-1815.
  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844-848.
  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408: 307-310.
  • Vousden KH (2000) p53: death star. Cell 103: 691-694.
  • Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2: 594-604.
  • Wang W, Takimoto R, Rastinejad F, El-Deiry WS (2003) Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding. Mol Cell Biol 23: 2171-2181.
  • Wu X, Bayle JH, Olson D, Levine AJ (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7: 1126-1132.
  • Yang A, Kaghad M, Caput D, McKeon F (2002) On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet 18: 90-95.
  • Zeimet AG, Marth C (2003) Why did p53 gene therapy fail in ovarian cancer? Lancet Oncol 4: 415-422.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.