PL EN


Preferences help
enabled [disable] Abstract
Number of results
2005 | 52 | 1 | 207-220
Article title

Rsp5 ubiquitin ligase affects isoprenoid pathway and cell wall organization in S. cerevisiae.

Content
Title variants
Languages of publication
EN
Abstracts
EN
Dimethylallyl diphosphate, an isomer of isopentenyl diphosphate, is a common substrate of Mod5p, a tRNA modifying enzyme, and the farnesyl diphosphate synthase Erg20p, the key enzyme of the isoprenoid pathway. rsp5 mutants, defective in the Rsp5 ubiquitin-protein ligase, were isolated and characterized as altering the mitochondrial/cytosolic distribution of Mod5p. To understand better how competition for the substrate determines the regulation at the molecular level, we analyzed the effect of the rsp5-13 mutation on Erg20p expression. The level of Erg20p was three times lower in rsp5-13 compared to the wild type strain and this effect was dependent on active Mod5p. Northern blot analysis indicated a regulatory role of Rsp5p in ERG20 transcription. ERG20 expression was also impaired in pkc1Δ lacking a component of the cell wall integrity signaling pathway. Low expression of Erg20p in rsp5 cells was accompanied by low level of ergosterol, the main end product of the isoprenoid pathway. Additionally, rsp5 strains were resistant to nystatin, which binds to ergosterol present in the plasma membrane, and sensitive to calcofluor white, a drug destabilizing cell wall integrity by binding to chitin. Furthermore, the cell wall structure appeared abnormal in most rsp5-13 cells investigated by electron microscopy and chitin level in the cell wall was increased two-fold. These results indicate that Rsp5p affects the isoprenoid pathway which has important roles in ergosterol biosynthesis, protein glycosylation and transport and in this way may influence the composition of the plasma membrane and cell wall.
Publisher

Year
Volume
52
Issue
1
Pages
207-220
Physical description
Dates
published
2005
received
2004-12-01
accepted
2005-02-10
Contributors
  • Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
author
  • Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
  • Laboratory of Glycobiology of Fungi, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
  • Laboratory of Glycobiology of Fungi, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
  • Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
  • Laboratory of Glycobiology of Fungi, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
  • Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
References
  • Agarwal AK, Rogers PD, Baerson SR, Jacob MR, Barker KS, Cleary JD, Walker LA, Nagle DG, Clark AM. (2003) Genome-wide expression profiling of the response to polyene, pyrimidine, azole, and echinocandin antifungal agents in Saccharomyces cerevisiae. J Biol Chem.; 278: 34998-5015.
  • Bammert GF, Fostel JM. (2000) Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicrob Agents Chemother.; 44: 1255-65.
  • Beaudenon SL, Huacani MR, Wang G, McDonnell DP, Huibregtse JM. (1999) Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol Cell Biol.; 19: 6972-9.
  • Benko AL, Vaduva G, Martin NC, Hopper AK. (2000) Competition between a sterol biosynthetic enzyme and tRNA modification in addition to changes in the protein synthesis machinery causes altered nonsense suppression. Proc Natl Acad Sci USA.; 97: 61-6.
  • Blanchard L, Karst F. (1993) Characterization of a lysine-to-glutamic acid mutation in a conservative sequence of farnesyl diphosphate synthase from Saccharomyces cerevisiae. Gene.; 125: 185-9.
  • Bulik DA, Olczak M, Lucero HA, Osmond BC, Robbins PW, Specht CA. (2003) Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress. Eukaryotic Cell.; 2: 886-900.
  • De Groot PWJ, Ruiz C, Vazguez de Aldana CR, Duenas E, Cid VJ, Del Rey R, Rodriquez-Pena JM, Perez P, Andel A, Caubin J, Arroyo J, Garcia JC, Gil C, Molina M, Garcia LJ, Nombela C, Klis FM. (2001) A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae. Comp Funct Genom.; 2: 124-42.
  • De la Fuente N, Maldonado AM, Portillo F. (1997) Glucose activation of the yeast plasma membrane H+-ATPase requires the ubiquitin-proteasome proteolytic pathway. FEBS Lett.; 411: 308-12.
  • De la Fuente N, Portillo F. (2000) The cell wall integrity/remodeling MAPK cascade is involved in glucose activation of the yeast plasma membrane H(+)-ATPase. Biochim Biophys Acta.; 1509: 189-94.
  • De Nobel H, Lawrie L, Brul S, Klis F, Davis M, Alloush H, Coote P. (2001) Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae. Yeast.; 18: 1413-28.
  • Dihanich ME, Najarian D, Clark R, Gillman EC, Martin NC, Hopper AK. (1987) Isolation and characterization of MOD5, a gene required for isopentenylation of cytoplasmic and mitochondrial tRNAs of Saccharomyces cerevisiae. Mol Cell Biol.; 7: 177-84.
  • Dimster-Denk D, Rine J, Phillips J, Scherer S, Cundiff P, DeBord K, Gilliland D, Hickman S, Jarvis A, Tong L, Ashby M. (1999) Comprehensive evaluation of isoprenoid biosynthesis regulation in Saccharomyces cerevisiae utilizing the Genome Reporter Matrix. J Lipid Res.; 40: 850-60.
  • Edwards PA, Tabor D, Kast HR, Venkateswaran A. (2000) Regulation of gene expression by SREBP and SCAP. Biochim Biophys Acta.; 1529: 103-13.
  • Gajewska B, Kamińska J, Jesionowska A, Martin NC, Hopper AK, Żołądek T. (2001) WW domains of Rsp5p define different functions: determination of roles in fluid phase and uracil permease endocytosis in Saccharomyces cerevisiae. Genetics.; 157: 91-101.
  • Gardner RG, Shearer AG, Hampton RY. (2001) In vivo action of the HRD ubiquitin ligase complex: mechanisms of endoplasmic reticulum quality control and sterol regulation. Mol Cell Biol.; 21: 4276-91.
  • Gillman EC, Slusher LB, Martin NC, Hopper AK. (1991) MOD5 translation initiation sites determine N6-isopentenyladenosine modification of mitochondrial and cytoplasmic tRNA. Mol Cell Biol.; 11: 2382-90.
  • Grabińska K, Palamarczyk G. (2002) Dolichol biosynthesis in the yeast Saccharomyces cerevisiae: an insight into the regulatory role of farnesyl diphosphate synthase. FEMS Yeast Res.; 2: 259-65.
  • Heese-Peck A, Pichler H, Zanolari B, Watanabe R, Daum G, Riezman H. (2002) Multiple functions of sterols in yeast endocytosis. Mol Biol Cell.; 13: 2664-80.
  • Henry KW, Nickels JT, Edlind TD. (2002) ROX1 and ERG regulation in Saccharomyces cerevisiae: implications for antifungal susceptibility. Eukaryot Cell.; 1: 1041-4.
  • Hershko A, Ciechanover A. (1998) The ubiquitin system. Annu Rev Biochem.; 67: 425-79.
  • Hicke L, Dunn R. (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol.; 19: 141-72.
  • Hoppe T, Matuschewski K, Rape M, Schlenker S, Ulrich HD, Jentsch S. (2000) Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell.; 102: 577-86.
  • Huibregtse JM, Scheffner M, Beaudenon S, Howley PM. (1995) A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci USA.; 92: 5249.
  • Huibregtse JM, Yang JC, Beaudenon SL. (1997) The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase. Proc Natl Acad Sci USA.; 94: 3656-61.
  • Jung US, Sobering AK, Romeo MJ, Levin DE. (2002) Regulation of the yeast Rlm1 transcription factor by the Mpk1 cell wall integrity MAP kinase. Mol Microbiol.; 46: 781-9.
  • Kaeberlein M, Guarente L. (2002) Saccharomyces cerevisiae MPT5 and SSD1 function in parallel pathways to promote cell wall integrity. Genetics.; 160: 83-95.
  • Kaida D, Toh-e A, Kikuchi Y. (2003) Rsp5-Bul1/2 complex is necessary for the HSE-mediated gene expression in budding yeast. Biochem Biophys Res Commun.; 306: 1037-41.
  • Kamińska J, Tobiasz A, Gniewosz M, Żołądek T. (2000) The growth of mdp1/rsp5 mutants of Saccharomyces cerevisiae is affected by mutations in the ATP-binding domain of the plasma membrane H+ -ATPase. Gene.; 242: 133-40.
  • Kamińska J, Grabińska K, Kwapisz M, Sikora J, Smagowicz WJ, Palamarczyk G, Żołądek T, Boguta M. (2002a) The isoprenoid biosynthetic pathway in Saccharomyces cerevisiae is affected in a maf1-1 mutant with altered tRNA synthesis. FEMS Yeast Res.; 2: 31-7.
  • Kamińska J, Gajewska B, Hopper AK, Żoxiłlądek T. (2002b) Rsp5p, a new link between the actin cytoskeleton and endocytosis in the yeast Saccharomyces cerevisiae. Mol Cell Biol.; 22: 6946-8.
  • Kato M, Wickner W. (2001) Ergosterol is required for the Sec18/ATP-dependent priming step of homotypic vacuole fusion. EMBO J.; 20: 4035-40.
  • Katzmann DJ, Sarkar S, Chu T, Audhya A, Emr SD. (2004) Multivesicular body sorting: ubiquitin ligase Rsp5 is required for the modification and sorting of carboxypeptidase S. Mol Biol Cell.; 15: 468-80.
  • Kwast KE, Lai LC, Menda N, James DT, III, Aref S, Burke PV. (2002) Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae: functional roles of Rox1 and other factors in mediating the anoxic response. J Bacteriol.; 184: 250-65.
  • Lees ND, Skaggs B, Kirsch DR, Bard M. (1995) Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae - a review. Lipids.; 30: 221-6.
  • Morvan J, Froissard M, Haguenauer-Tsapis R, Urban-Grimal D. (2004) The ubiquitin ligase Rsp5p is required for modification and sorting of membrane proteins into multivesicular bodies. Traffic.; 5: 383-92.
  • Mullner H, Daum G. (2004) Dynamics of neutral lipid storage in yeast. Acta Biochim Polon.; 51: 323-47.
  • Munn AL, Heese-Peck A, Stevenson BJ, Pichler H, Riezman H. (1999) Specific sterols required for the internalization step of endocytosis in yeast. Mol Biol Cell.; 10: 3943-57.
  • Muratani M, Tansey WP. (2003) How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol.; 4: 192-201.
  • Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ. (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol.; 21: 4347-68.
  • Nemčovič M, Farkaš V. (2001) Cell wall composition and polysaccharide synthase activity changes following photoinduction in Trichoderma viride. Acta Biol Hung.; 52: 281-8.
  • Neumann S, Petfalski E, Brugger B, Grosshans H, Wieland F, Tollervey D, Hurt E. (2003) Formation and nuclear export of tRNA, rRNA and mRNA is regulated by the ubiquitin ligase Rsp5p. EMBO Rep.; 4: 1156-62.
  • Parks LW, Casey WM. (1995) Physiological implications of sterol biosynthesis in yeast. Annu Rev Microbiol.; 49: 95-116.
  • Reynolds ES. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol.; 17: 208-12.
  • Rodriguez MS, Gwizdek C, Haguenauer-Tsapis R, Dargemont C. (2003) The HECT ubiquitin ligase Rsp5p is required for proper nuclear export of mRNA in Saccharomyces cerevisiae. Traffic.; 4: 566-75.
  • Rotin D, Staub O, Haguenauer-Tsapis R. (2000) Ubiquitination and endocytosis of plasma membrane proteins: role of Nedd4/Rsp5p family of ubiquitin-protein ligases. J Membr Biol.; 176: 1-17.
  • Sato R, Inoue J, Kawabe Y, Kodama T, Takano T, Maeda M. (1996) Sterol-dependent transcriptional regulation of sterol regulatory element-binding protein-2. J Biol Chem.; 271: 26461-4.
  • Servouse M, Karst F. (1986) Regulation of early enzymes of ergosterol biosynthesis in Saccharomyces cerevisiae. Biochem J.; 240: 541-7.
  • Shcherbik N, Żołądek T, Nickels JT, Haines DS. (2003) Rsp5p is required for ER bound Mga2p120 polyubiquitination and release of the processed/tethered transactivator Mga2p90. Curr Biol.; 13: 1227-33.
  • Shcherbik N, Kee Y, Lyon N, Huibregtse JM, Haines DS. (2004) A single PXY motif located within the carboxy-terminus of Spt23p and Mga2p mediates a physical and functional interaction with ubiquitin ligase Rsp5p. J Biol Chem.; 279: 53892-8.
  • Sherman F. (2002) Getting started with the yeast. Methods Enzymol.; 350: 3-41.
  • Smits GJ, van den Ende H, Klis FM. (2001) Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology.; 147: 781-94.
  • Song L, Poulter CD. (1994) Yeast farnesyl-diphosphate synthase: site-directed mutagenesis of residues in highly conserved prenyltransferase domains I and II. Proc Natl Acad Sci USA.; 91: 3044-8.
  • Stamenova SD, Dunn R, Adler AS, Hicke L. (2004) The Rsp5 ubiquitin ligase binds to and ubiquitinates members of the yeast CIN85-endophilin complex, Sla1-Rvs167. J Biol Chem.; 279: 16017-25.
  • Szkopińska A, Swieżewska E, Karst F. (2000) The regulation of activity of main mevalonic acid pathway enzymes: farnesyl diphosphate synthase, 3-hydroxy-3-methylglutaryl-CoA reductase, and squalene synthase in yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun.; 267: 473-7.
  • Vik A, Rine J. (2001) Upc2p and Ecm22p, dual regulators of sterol biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol.; 21: 6395-405.
  • Watanabe Y, Irie K, Matsumoto K. (1995) Yeast RLM1 encodes a serum response factor-like protein that may function downstream of the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol Cell Biol.; 15: 5740-9.
  • Weissman AM. (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol.; 2: 169-78.
  • Wood TM, Bhat KM. (1988) Methods for measuring cellulase activities. Methods Enzymol.; 160: 89-91.
  • Zinser E, Paltauf F, Daum G. (1993) Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism. J Bacteriol.; 175: 2853-8.
  • Żołądek T, Vaduva G, Hunter LA, Boguta M, Go BD, Martin NC, Hopper AK. (1995) Mutations altering the mitochondrial-cytoplasmic distribution of Mod5p implicate the actin cytoskeleton and mRNA 3' ends and/or protein synthesis in mitochondrial delivery. Mol Cell Biol.; 15: 6884-94.
  • Żołądek T, Tobiasz A, Vaduva G, Boguta M, Martin NC, Hopper AK. (1997) MDP1, a Saccharomyces cerevisiae gene involved in mitochondrial/cytoplasmic protein distribution, is identical to the ubiquitin-protein ligase gene RSP5. Genetics.; 145: 595-603.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv52i1p207kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.