PL EN


Preferences help
enabled [disable] Abstract
Number of results
2004 | 51 | 4 | 1075-1080
Article title

Oxidation of glycerol-3-phosphate in porcine and bovine adrenal cortex mitochondria.

Content
Title variants
Languages of publication
EN
Abstracts
EN
The capabilities of porcine adrenal cortex mitochondria to oxidize glycerol-3-phosphate (GP) were studied. In comparison with bovine adrenal cortex mitochondria, porcine mitochondria oxidized GP about three times more actively (18.9 vs 6.1 nmol O2/min per mg protein in the presence of ADP) and the activity of mitochondrial glycerol-3-phosphate dehydrogenase was about four times higher (33.4 vs 8.2 nmol/min per mg protein). In porcine adrenal cortex mitochondria we found similar values for succinate and GP oxidation both in the absence and presence of ADP or deoxycorticosterone (DOC). Rotenone sensitivity of DOC stimulation of GP oxidation indicated that porcine adrenal cortex mitochondria are able to oxidize GP and thus to generate NADPH from GP, presumably via reverse electron transport followed by energy-dependent NADH-NADP transhydrogenation.
Publisher

Year
Volume
51
Issue
4
Pages
1075-1080
Physical description
Dates
published
2004
received
2004-06-30
revised
2004-09-28
accepted
2004-10-20
Contributors
  • Department of Bioenergetics, Jędrzej Śniadecki University School of Physical Education and Sport, Gdańsk, Poland
  • Department of Bioenergetics, Jędrzej Śniadecki University School of Physical Education and Sport, Gdańsk, Poland
  • Department of Bioenergetics, Jędrzej Śniadecki University School of Physical Education and Sport, Gdańsk, Poland
  • Institute of Physiology Academy of Sciences of the Czech Republic and Center for Cardiovascular Research, Prague, Czech Republic;
author
  • Department of Biochemistry "G. Morruzi", Bologna University, Bologna, Italy
References
  • Brownie AC, Grant JK. (1954) Biochem J.; 57: 255-63.
  • Bucher T, Klingenberg M. (1958) Angew Chem.; 70: 552-70.
  • Estabrook RW. (1967) Methods Enzymol.; 10: 41-7.
  • Grant JK, Mongkolkul K. (1959) Biochem J.; 71: 34-8.
  • Houštěk J, Cannon B, Lindberg O. (1975) Eur J Biochem.; 54: 11-8.
  • Jefcoate C. (2002) J Clin Invest.; 110: 881-90.
  • Launay AN, Michejda JW, Vignais PV. (1974) Biochim Biophys Acta.; 347: 60-76.
  • Litwińska D, Szczesna-Kaczmarek A, Popinigis J. (1984) Int J Biochem.; 16: 943-6.
  • Lowry OH, Rosebrough JN, Farr AL, Randal RJ. (1951) J Biol Chem.; 193: 265-75.
  • MacDonald MJ. (1981) J Biol Chem.; 256: 8287-90.
  • Mandrik KA, Doroshkevich NA, Vinogradov VV. (1982) Ukr Biokhim Zh.; 54: 457-9.
  • Orme-Johnson NR. (1990) Biochim Biophys Acta.; 1020: 213-31.
  • Popinigis J, Antosiewicz J, Mazzanti L, Bertoli E, Lenaz G, Cambria A. (1990) Biochem Int.; 21: 441-51.
  • Popinigis J, Antosiewicz J, Kaczor J, Rauchová H, Lenaz G. (2003) Acta Biochim Polon.; 50 (Suppl.): 218-9.
  • Rauchová H, Battino M, Fato R, Lenaz G, Drahota Z. (1992) J Bioenerg Biomembr.; 24: 235-41.
  • Shears SB, Boyd GS. (1982) FEBS Lett.; 137: 146-8.
  • Simpson ER, Frenkel R. (1969) Biochem Biophys Res Commun.; 35: 765-70.
  • Stocco DM. (2000) Intramitochondrial cholesterol transfer. Biochim Biophys Acta.; 1486: 184-97.
  • Wakabayashi T, Asano M, Kurono C, Ozawa T, Kishimoto H. (1976) Acta Pathol Jpn.; 26: 457-66.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-abpv51i4p1075kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.